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Abstract—We present evidence for the existence and effective-
ness of adversarial attacks on graph neural networks (GNNs) that
aim to degrade fairness. These attacks can disadvantage a partic-
ular subgroup of nodes in GNN-based node classification, where
nodes of the underlying network have sensitive attributes, such as
race or gender. We conduct qualitative and experimental analyses
explaining how adversarial link injection impairs the fairness of
GNN predictions. For example, an attacker can compromise the
fairness of GNN-based node classification by injecting adversarial
links between nodes belonging to opposite subgroups and opposite
class labels. Our experiments on empirical datasets demonstrate
that adversarial fairness attacks can significantly degrade the
fairness of GNN predictions (attacks are effective) with a low
perturbation rate (attacks are efficient) and without a significant
drop in accuracy (attacks are deceptive). This work demonstrates
the vulnerability of GNN models to adversarial fairness attacks.
We hope our findings raise awareness about this issue in our
community and lay a foundation for the future development of
GNN models that are more robust to such attacks.

Index Terms—fairness, adversarial attacks, graph neural net-
works

I. INTRODUCTION

Previous research has already shown that graph neural net-
works (GNNs) are susceptible to adversarial attacks targeting
prediction accuracy [7], [16], [44]. Besides, in classical ma-
chine learning (ML) settings, recent studies have also uncov-
ered various possibilities for adversarial attacks to compromise
the fairness of ML models [25]. However, we still lack a
deeper insight into GNNs’ susceptibility to adversarial attacks
on prediction fairness as well. Here, we think of prediction
fairness as a similar or equal treatment of (social) subgroups
for a given prediction task. For example, in the job-hunting
market where candidates are socially connected, employers use
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Fig. 1. Fairness Attacks on GNNs (FA-GNN). In the NBA player network [6],
the player’s nationality represents their sensitive attribute s: the US (round) or
non-US (square). The classification task is to predict their salary level y: high
or low. Suppose the attacker has access to the network G, with the sensitive
attributes s and the labels y on a subset of nodes in G. The attacker can
predict the labels for the rest of the nodes via a surrogate GNN [45]. Then
one strategy of FA-GNN is to perturb G by adding links between players
with opposite labels and opposite sensitive attributes, e.g., high salary non-
US players (y1s1) and low salary US players (y0s0). After training a GNN
model on the perturbed network G′, the predictions of the nodes in purple
circles differ from the predictions on the clean graph G, and the statistical
parity largely increases. The GNN model becomes more unfair in that it is
more likely to predict high salaries for US players. This example illustrates
how adversarial fairness attacks can degrade the fairness of GNN’s predictions
via inter-group link injection.

graph machine learning models (GNNs) to decide the salary
of each candidate. Attackers from a specific demographic
group, e.g. a certain race, gender, or religion, can intentionally
conduct adversarial attacks, with the aim of making the model
more likely to predict high salary for their own group, while



severely hurting the benefit of the other groups (cf. Fig. 1).
Hence, adversarial attacks on the fairness of GNNs enable an
attacker to deliberately put individuals belonging to a subgroup
of nodes at a disadvantage. We thus turn our attention to the
following problem:
Problem. We define and analyze adversarial attack strategies
that degrade the fairness of GNN-based node classifiers.
Method. We base our research on two separate yet related
streams of research: adversarial attacks on GNNs that aim
to reduce GNN classification accuracy [7], [23], [36], [39],
[44], [45], and attacks on fairness in the context of classical
machine learning [5], [26], [27], [30]. We measure fairness in
terms of statistical parity, equality of opportunity and equal-
ized odds, which capture the level of independence between
predictions and group memberships. In our node classification
problem, we assume a binary class label y with negative
(y=0) or positive (y=1) values. Each node also has a binary
sensitive attribute s representing its group: privileged (s=0) or
unprivileged (s=1). First, we formally define the problem of
Fairness Attacks on GNNs (FA-GNN). We then present four
adversarial linking strategies based on injecting adversarial
links between two subsets of nodes (from a specific class
label and sensitive attribute value pair). Through qualitative
analysis, we develop insights on the influence of these linking
strategies on the statistical parity of GNN predictions. We
further illustrate these strategies on synthetically generated
graphs by evaluating the prediction fairness of the graph
convolution network (GCN) model [17]. Finally, we evaluate
FA-GNN adversarial linking strategies on three real-world
social network datasets. Fig. 1, illustrates an FA-GNN strategy
on the NBA player social network [6], where the attack
degrades the fairness of GNN predictions.
Results. Our qualitative analysis and experimental evaluation
demonstrate the existence and success of adversarial attacks
on the fairness of GNN-based classifiers. In particular, our
results suggest that adding edges between nodes belonging to
opposite groups and opposite class labels leads to less fair
predictions. This finding is particularly interesting since it
appears plausible that intra-group links promote fairness [24],
[31]. As one would expect, compared to our presented fairness
attacks, both basic and state-of-the-art attacks on GNNs –
originally developed to reduce prediction accuracy – do not
degrade GNN’s fairness.
Contributions and implications. First, we present the prob-
lem of adversarial attacks on GNNs that can impair the
fairness of node classification. Second, we provide theoretical
insights on the consequences of adversarial link injection on
the fairness of GNN-based node classifiers. Third, through
experiments on three real-world datasets, we demonstrate the
effectiveness, efficiency, and deceptiveness of fairness attacks1.
Our work raises awareness about the vulnerability of GNNs
to fairness attacks and argues for the development of models
that are more robust against such attacks.

1We provide our code and a detailed hyperparameter description at https:
//github.com/mengcao327/attack-gnn-fairness

II. PRELIMINARIES

Notation. We consider a graph G(V,E,X, y, s), where V =
{1, ..., N} is the set of nodes, E ⊆ V × V is the set of
edges, X ∈ RN×F is the feature matrix, while y ∈ {0, 1}N
represent the node labels and s ∈ {0, 1}N represent the node
sensitive attributes. Hence, each node u ∈ V has a label y(u)
denoting its class, a sensitive attribute (e.g., race, gender, etc.)
s(u), whose value determines its group membership, and an
F -dimensional feature vector X(u).
Subsets. We consider a partition S of the node set V into four
subsets: S = {y0s0, y0s1, y1s0, y1s1}, where yisj denotes the
subset of nodes with value pair y(.) = i and s(.) = j, with
nyisj representing its cardinality. We overload this notation
to represent the number of nodes in a group s = j as nsj .
Hereafter, the term subset denotes nodes with a particular
combination of label and sensitive attribute values, unlike
the term group that denotes nodes with a particular sensitive
attribute value.
Graph neural networks for node classification. GNNs [40]
are machine learning models that operate on graph data.
GNNs update a node’s representation by aggregating the
initial representations of its neighbors, which is known as
message passing and aggregation. In (semi-)supervised node
classification, we train a GNN on the ground truth classes
of labeled nodes Vl ⊆ V via backward propagation. For
binary node classification, the GNN outputs the predicted
probability of each node belonging to class y = 1, i.e.,
GNN : G(V,E,X) → [0, 1]N . After thresholding, this results
in one prediction per node ŷ(u) ∈ {0, 1}.
Structural adversarial attacks on GNNs. Given a clean
graph G(V,E,X, y, s), an adversarial attack [16] modifies this
graph and returns a perturbed graph G′. Structural adversarial
attacks particularly change the clean edge set into a perturbed
edge set E′. However, the number of modifications that an
attacker can make on the edge set is bounded by a perturbation
rate δ, i.e., the attacker can add or remove up to δ|E| edges.
We further consider that the attacker modifies the graph prior
to the GNN training and evaluation (poisoning attack). Such
adversarial attacks increase the prediction error of the GNN
on the perturbed graph, particularly the error on nodes directly
targeted by the attack [44]. We name the influenced GNN
model as the victim GNN model.
Fairness metrics. We measure the performance of FA-GNN
linking strategies in terms of three group fairness metrics,
which capture the difference in predictive outcomes and error
rates between the two groups. To recognize which group is at
an advantage or a disadvantage, we use a signed difference for
the following metrics instead of the absolute difference used
in [2]. For all three metrics, a positive value indicates that the
GNN predicts ŷ = 1 for group s0 more often than s1 and vice
versa.

Statistical parity difference [8] measures the difference in
predictive outcomes between the two groups

SPD = P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1). (1)



Equality of opportunity difference [11] measures the differ-
ence of the classifier’s true positive rates (or equivalently, false
negative rates [35]) between the two groups

EOD = P (ŷ = 1|y = 1, s = 0)− P (ŷ = 1|y = 1, s = 1).
(2)

Equalized odds difference [11] measures the overall differ-
ences of the classifier’s true positive rates and false positive
rates (or equivalently, true and false negative rates) between
the two groups.

EQD = P (ŷ = 1|y = 1, s = 0)− P (ŷ = 1|y = 1, s = 1)

+ P (ŷ = 1|y = 0, s = 0)− P (ŷ = 1|y = 0, s = 1).
(3)

III. FAIRNESS ATTACKS ON GNNS

In this section, we devise and analyze fairness attacks on
GNNs via adversarial link injection. First, we formalize the
attack settings and describe adversarial linking strategies that
work under these settings. Then, we provide a qualitative
analysis to understand the consequences of this adversarial
linking on the fairness of GNNs. Finally, we illustrate these
consequences on synthetically generated graphs.

A. Problem formulation

In this work, we study fairness attacks on GNN-based binary
node classification with the following settings.
Attacker’s goal. The attacker’s goal is to degrade the pre-
diction fairness of a victim GNN binary node classifier by
increasing the absolute statistical parity difference |SPD|.
The attacker can achieve that by increasing or decreasing the
(signed) SPD depending on its initial value in the clean graph.
We elaborate more on the initial SPD value and the suitable
strategies in Section IV-A.
Attacker’s knowledge. The data available to the attacker
include the structural information, feature information and
sensitive attributes of the entire graph as well as the ground-
truth labels of some nodes W ⊆ V , that is (V,E,X, y(W ), s).
For example, in the job-hunting market, an attacker may have
access to the candidates’ attributes and relationships in the
social network, as well as the demographic group of each can-
didate, but can only obtain the salary of some candidates. The
attacker has no access to the parameters or hyperparameters
of the victim GNN model. However, similar to the settings
in [44], [45], the attack uses a surrogate GCN [17] model
to predict labels for the unlabeled nodes, which makes the
attack a grey-box attack [16]. We denote the predictions of the
surrogate GCN as ȳ to distinguish them from the predictions
of the victim GNN ŷ.
Attacker’s capabilities. The attacker has the capability of
injecting edges into the graph up to a budget, defined by a
perturbation rate δ > 0, i.e., the attacker can add up to δ|E|
edges to the graph.

B. Attack strategy

We now introduce adversarial linking strategies for fairness
attacks on GNNs (FA-GNN) that work within our settings.
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Fig. 2. (Top) Linking strategies for fairness attacks involving nodes with y =
1, s = 1. Each circle yisj represents the subset of all nodes with y = i, s =
j. The colored line between two subsets denotes that the respective strategy
adds links between random nodes of these subsets. (Bottom) Consequences
of fairness attacks on synthetic graphs. Each figure shows the statistical parity
difference (SPD) of a linking strategy on synthetic graphs. The arrows show
where the result becomes more unfair. We see that the DD strategy increases
SPD and the EE strategy reduces SPD. Meanwhile, ED fluctuates around 0,
and DE also fluctuates around 0 with a high variance. The simulation results
show that, DD and EE degrade the GNN fairness effectively, while DE is
inconsistent and ED is ineffective.

These linking strategies take a clean graph (V,E,X, y(W ), s)
as an input and adds edges between random nodes from subset
A ∈ S and random nodes from subset B ∈ S up to a
perturbation rate δ. To be able to partition the graph, the
attacker first trains a surrogate GCN model to predict the labels
for unlabeled nodes ȳ(V \ W ). The attacker then sets the
predictions of labeled nodes as the known ground-truth labels
ȳ(W ) := y(W ). This provides an approximation of which
nodes belong to A and B. Finally, the attacker adds ⌊δ|E|⌋
edges between random nodes from A and B.

Choosing A,B reduces to one of the following four linking
strategies (illustrated in Fig. 2 - Top) that connect nodes of

1) DD: Different class and Different group,
2) DE: Different class and Equal group,
3) ED: Equal class and Different group, or
4) EE: Equal class and Equal group, that is A = B.

Note that in this paper we demonstrate only one possible
way of performing a fairness attack, e.g., via adversarial link
injection. We leave other types of graph adversarial attacks on
fairness for future work. Hereafter, we mainly use the term
FA-GNN to refer to the aforementioned linking strategies.

C. Attack consequences

We investigate the effects of the different adversarial link-
ing strategies on GNN fairness in terms of statistical parity
difference (SPD). As SPD captures the predictive difference
between the groups, we study the attack effects in terms of the
classification errors for those groups (cf. binary classification
confusion matrix in Table I). First, we rewrite Equation 1 in



terms of our four subsets:
SPD = P (ŷ = 1, y = 0|s = 0) + P (ŷ = 1, y = 1|s = 0)

− P (ŷ = 1, y = 0|s = 1)− P (ŷ = 1, y = 1|s = 1).
(4)

Next, we rewrite with the terms from the confusion matrix:

SPD =
FPs0 + TPs0

ns0

− FPs1 + TPs1

ns1

, (5)

where FPsj and TPsj are the false and true positive counts
for group s = j. Lastly, we rewrite once more using only error
terms:

SPD =
FPs0 − FNs0

ns0

− FPs1 − FNs1

ns1

+
ny1s0

ns0

− ny1s1

ns1

,

(6)

where FNsj and FPsj are the false negative and false positive
counts in group s = j. If we consider a random classifier or
a constant classifier, the terms in Equation 6 cancel out and
SPD = 0. In case of a perfect classifier, all error terms vanish
in Equation 6, and we get SPD = ny1s0/ns0 − ny1s1/ns1 .
Hence, a perfect predictor is as fair as the original label
distribution.

We use Equation 6 to investigate the different linking
strategies of FA-GNN. We explore homophilic graphs in our
analysis (where likes attract), as GNNs are typically deployed
on homophilic graphs [43]. According to previous work [42],
adding edges between nodes of different classes increases the
error rates on these nodes. Conversely, adding edges between
nodes of the same class decreases the error rates on these
nodes. We neglect the changes of errors on nodes that are not
involved in the linking, since directly attacked nodes usually
exhibit a higher error [44] (we address this assumption later in
Section III-D). After performing the attack on the clean graph
G, we get a new statistical parity difference on the perturbed
graph G′, that is SPD′ = SPD + ∆SPD. We denote the
change in the number of false positives and false negatives on
sj as ∆FPsj and ∆FNsj , respectively.
Analysis. Without loss of generality, we discuss the adversarial
linking strategies from the perspective of nodes in A = y1s1.

Case DD: B = y0s0. Here, we link nodes from different
classes, so error rates would increase:

∆FPs0 ≥ 0,∆FNs1 ≥ 0,∆SPD =
∆FPs0

ns0

+
∆FNs1

ns1

≥ 0

Therefore, this linking strategy results in an attack against
group s1. Note that we neglect ∆FPs1 and ∆FNs0 since

TABLE I
BINARY CLASSIFICATION CONFUSION MATRIX WITH A BINARY SENSITIVE

ATTRIBUTE.

Group s = 0 s = 1
Class y = 0 y = 1 y = 0 y = 1

Prediction ŷ = 0 TNs0 FNs0 TNs1 FNs1

ŷ = 1 FPs0 TPs0 FPs1 TPs1∑
ny0s0 ny1s0 ny0s1 ny1s1∑

ns0 ns1

they are not directly affected by the attack. Next, we discuss
the remaining adversarial linking strategies of FA-GNN in the
same manner.

Case DE: B = y0s1. Here we also link nodes from different
classes, so error rates would increase:

∆FPs1 ≥ 0,∆FNs1 ≥ 0,∆SPD =
∆FNs1

ns1

− ∆FPs1

ns1

The sign of ∆SPD depends on the values of ∆FNs1 and
∆FPs1 . This linking strategy results in a change on SPD but
the direction is not predictable, so the attack is not targeted,
that is, it does not specifically increase or decrease SPD.

Case ED: B = y1s0. We link nodes from the same class,
so error rates would decrease:

∆FNs0 ≤ 0,∆FNs1 ≤ 0,∆SPD =
∆FNs1

ns1

− ∆FNs0

ns0

The sign of ∆SPD is unpredictable, hence the attack is not
targeted. In the case of a small error rate on the clean graph,
this linking strategy will not be effective, as ∆FNs0 and
∆FNs1 will be small.

Case EE: B = y1s1. Here we also link nodes from the same
class, so error rates would decrease:

∆FNs1 ≤ 0,∆SPD =
∆FNs1

ns1

≤ 0

SPD decreases, therefore this linking strategy results in an
attack in favor of group s1.

In summary, linking y1s1 and y0s0 (nodes from different
classes and different groups, that is DD) results in an attack
targeted against s1. Besides, increasing the intra-connectivity
of y1s1 (that is, EE) results in a targeted attack against s0. EE
only manipulates one subset, which might not be as effective
as DD that increases the connectivity between two subsets.

D. Illustration on synthetic graphs

In this section, we illustrate FA-GNN linking strategies on
synthetic graphs and observe the GNN’s response in terms
of statistical parity difference (SPD). We consider graphs
of 4 000 nodes divided equally into four subsets of size
1 000, in the order y0s0, y0s1, y1s0, and y1s1. Note that this
uniform group distribution is for illustration purposes. We later
illustrate the strategies on empirical datasets, where the groups
are unbalanced.
Generating node features. For each node, we generate 10 fea-
tures based on its class membership (for illustration purposes,
node features are independent of group memberships in this
setup). This results in a feature matrix X ∈ R4 000×10, where
X(u, k) is the k-th feature of node u. For a node u ∈ yisj ,
we sample 10 features from a normal distribution X(u, k) ∼
N (µyi(k), σ

2) where 1 ≤ k ≤ 10. µyi ∈ [−1,+1]10 is the
mean vector sampled independently at random from [−1,+1].
In our settings, we set σ2 = 0.5.
Generating the clean graph. To build our graphs, we use
the stochastic block model [12] (SBM) on the four subsets.
This requires a symmetric density matrix M ∈ [0, 1]4×4 as an
input. As classical GNNs are typically deployed on homophilic



graphs [13], [43], we follow a setup where the clean graph is
homophilic w.r.t. labels. To that end, we set the intra-label edge
density to 0.004 and the inter-label edge density to 0.0016.
This preserves an appropriate level of sparsity and homophily
in the graph. Lower intra-label densities would increase the
variance in neighborhood sampling. Besides, lower inter-label
densities could result in extreme homophily, which makes the
classification task trivial for the GNN model [22], [43].
Generating the perturbed graph. We apply the four strate-
gies DD, DE, ED, EE on subset A = y1s1. Let subset B ∈ S
be the other subset to which we connect nodes of y1s1. Let |E|
be the number of edges in the clean graph, which we sample
using SBM as explained above. For a perturbation rate δ, we
add δ|E| edges between random nodes from A and random
nodes from B. Note that in these illustrative experiments, the
labels of all nodes are available to the attacker. Hence, the
attacker does not utilize a surrogate GCN.
Evaluation. After building the graph, we train a graph con-
volutional network [17] (GCN) model for node classification.
For the training process, we randomly sample |Vl| = 20 nodes
to be in the training set, while the rest of the nodes are in
the test set. We repeat each trial for 100 independent runs,
implying a different graph structure, node features and GCN
weight initialization in each run.
Results. In Fig. 2 (bottom), for each strategy, we report
the statistical parity difference after training the GCN across
varying perturbation rates δ ∈ [0.05, 0.3] with steps of 0.025.
We find that (1) DD strategy increases SPD, (2) DE strategy
fluctuates around 0, (3) ED strategy also fluctuates around 0
without a significant influence on SPD, and (4) EE strategy
decreases SPD but at a lower rate than DD. In addition,
the DD strategy reaches a peak and then drops with more
perturbations. To address this and to reflect on our qualitative
analysis in III-C, we report the changes in error rates from
Equation 6 in our experiment.
Monitoring error rates. Here, we show how error terms
change with an increasing attack perturbation rate. In Fig. 3,
we show the false positive/negative rates for each strat-
egy with an increasing perturbation rate (averaged over 100
random seeds). For group s = j, the false positive rate
is FPRsj = FPsj/nsj while the false negative rate is
FNRsj = FNsj/nsj . On average, involved terms increase
for DD (FPRs0 , FNRs1 ) and DE (FPRs1 , FNRs1 ), and
decrease for ED (FNRs0 , FNRs1 ) and EE (FNRs1 ). These
changes are in line with our assumptions in Section III-C.

Uninvolved terms increase at a lower rate for DD and
DE. This particularly explains why, even by neglecting the
changes in these terms, our analysis could approximate the
final result of SPD (Fig. 2 - Bottom). For ED, uninvolved
terms (FPRs0 , FPRs1 ) decrease as well, which is expected
due to better separation between the two classes. For EE,
FNRs0 also increases, which also reduces SPD. We attribute
this to the lower influence of the links between y1s0 and y1s1
as the latter attain high node degrees [14]. This makes nodes
with y = 0 have a relatively high influence on y1s0 nodes and
hence more false negatives of s0.
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Fig. 3. Error rates on synthetic graphs. Each figure corresponds to a linking
strategy applied on subset y1s1 in a synthetic homophilic graph. FPRsj
and FNRsj are the false positive and negative rates on subset sj . Inter-
label link injection (DD and DE) increase error on the involved subsets
(FNRs1 , FPRs0 with DD and FNRs1 , FPRs1 with DE). Conversely,
intra-label link injection (ED and EE) decrease the error rates on the involved
subsets (FNRs1 , FNRs0 with ED and FNRs1 with EE). In conclusion,
involved subsets show a significant change in error rates with the attack.
Meanwhile, the change in error rates on uninvolved subsets is particularly
negligible for DD and DE.

Finally, for DD strategy, we notice a drop at higher per-
turbation rates for both FPRs0 and FNRs1 , which explains
the observed drop in SPD in Fig. 2 - Bottom. A possible
interpretation for the drop in FPRs0 and FNRs1 is that the
subsets y0s0 and y1s1 are approaching extreme heterophily,
which makes these subsets have distinct neighborhood distri-
butions. This case is well-studied in [22] and labeled as “good
heterophily” where GNNs achieve lower error rates (note that
δ = 0.3 represents a remarkably high perturbation rate).

In conclusion, monitoring the error rates supports the
assumptions for our analysis and opens a space for more
exploration that we leave for future research. Note that in
this paper, we present our analyses for homophilic graphs.
However, we also performed our analysis and experiments on
heterophilic and random graphs, and we found that DD and
EE remain effective in attacking GNN’s fairness also on these
types of graphs (Appendix B).

IV. EXPERIMENTS

In this section, we evaluate FA-GNN on three real-world
social network datasets. Specifically, we aim to explore:

1) Effectiveness: How do the proposed FA-GNN strategies
perform in degrading the fairness of the GNN models?

2) Efficiency: What is the impact of the amount of labeled
data available to the attacker on the fairness results?

3) Comparative analysis: How do existing heuristics and
accuracy-targeting attack methods influence GNN’s fair-
ness compared to FA-GNN? Does FA-GNN (unintention-
ally) degrade accuracy in comparison?

Next, we introduce the datasets and baselines, followed by
the experimental settings and results.
Datasets. We conduct experiments on the following three
empirical datasets. 1) Pokec z and 2) Pokec n [6] are two
social networks sampled from Pokec [32], a popular social
network in Slovakia. Users in Pokec z and Pokec n belong
to two major regions of different provinces. User features
include gender, age, hobbies, interests, etc. The classification



task for both datasets is to predict the working field of users
with the user’s region as the sensitive attribute. Pokec datasets
do not reveal the specific working field or region names,
so we only refer to their binary values. 3) DBLP [33] is a
computer science bibliography network that contains papers
from 4 areas (Database, Data Mining, Machine Learning, and
Information Retrieval). Each area contains 5 representative
conferences. We extract all the papers and authors in these
20 conferences, and construct a coauthor network based on
co-author relationships. We match the author’s gender as the
sensitive attribute based on [15], and we construct the authors’
features based on the words from their published papers’ titles,
which reveal their research interests. The classification task is
to predict the research area of the author (in Database or not).
We list the detailed statistics of the datasets in Table II.
Fairness attack. We compare four adversarial linking strate-
gies of FA-GNN, i.e., DD, DE, ED, EE, as denoted in
Section III-B. We apply these strategies on all four subsets
in S. Please note that some strategy-subset combinations are
equivalent. For example, DD on y1s1 is equivalent to DD on
y0s0, and they both mean adding edges between random nodes
of y1s1 and y0s0. In such cases, we do not report duplicates,
which totals up to 10 possible FA-GNN attacks.
Baselines. To validate whether existing attacks on accuracy
can (unintentionally) degrade fairness, and to compare the
performance of FA-GNN, we consider the following attack
methods:

• Random: A baseline attack method that randomly adds
edges to the network.

• DICE [38]: An accuracy-targeting baseline attack method
that connects nodes with different labels and disconnects
nodes with the same labels.

• PR-BCD [9]: A SotA accuracy-targeting attack method
via adding/removing edges based on Randomized Block
Coordinate Descent (R-BCD), which scales to large
graphs.

Note that the space requirements of attacks such as [4], [39],
[41], [45] are prohibitive given the sizes of our datasets, so
we only consider scalable attacks for our comparison.
Metrics. We analyze FA-GNN’s performance based on the

TABLE II
STATISTICS OF THE EMPIRICAL DATASETS.

Dataset Pokec z Pokec n DBLP

# of nodes 67,435 66,082 20,111
# of edges 617,765 516,784 57,508
Feature dimension 274 263 2,491
% of nodes in y0s0 30.88% 35.46% 54.21%
% of nodes in y0s1 15.57% 15.81% 12.58%
% of nodes in y1s0 33.55% 32.40% 27.63%
% of nodes in y1s1 20.00% 16.33% 5.58%
Intra-label density* (×10−4) 4.7 4.8 12.5
Intra-group density (×10−4) 7.0 6.9 8.3

* The intra density is the number of intra-edges divided by the
number of all possible edges.

three fairness metrics as introduced in Section II, i.e., statisti-
cal parity difference (SPD), equality of opportunity difference
(EOD), and equalized odds difference (EQD). The farther
these metrics are from 0, the more unfair the results are.
Victim GNN models. To comprehensively evaluate the ef-
fectiveness of the proposed attack strategies, we compare
the following GNN models: 1) general GNN models, i.e.,
GCN [17], GAT [34], and GraphSAGE [10], and 2) fairness-
enhancing GNN models, i.e., FairGNN [6] and NIFTY [1].
Surrogate GCN model. In our setting, the attacker’s knowl-
edge of node labels is limited to the training set. To obtain the
labels of the remaining nodes, we use GCN as the surrogate
model for label prediction, as introduced in Section III. This
surrogate GCN is independent of the victim GNN model for
node classification.
Experimental settings. We use GNN models of two layers
with 64-dimensional hidden layers. For GAT, we use one layer
with 2 attention heads on the Pokec datasets, and 2 layers
with 8 attention heads on DBLP. For GraphSAGE, we use the
mean aggregator for node feature aggregation. For FairGNN,
we use GCN as the base model, and the number of sensitive
attributes for the sensitive attribute estimator is set to 200. The
hyperparameters α and β in FairGNN for balancing the loss
functions are set to 2 and 0.1, respectively. For the victim GNN
model training, we randomly pick 50%, 25%, 25% of labeled
nodes as training set, validation set, and testing set. For the
attacker, the available labeled nodes are the same as the victim
GNN’s training set. We increase the attack perturbation rate
from 0.05 to 0.3 with a 0.05 increment. We train all models
on each of the perturbed networks for 500 epochs and choose
the parameters with the best node classification accuracy on
the validation set. We report the mean and standard deviations
of fairness metrics on the test set on 5 independent runs.

A. Effectiveness of attacks

Fairness metrics. First, we evaluate the attack performance
on the GCN model based on three signed fairness metrics.
We present the results in Fig. 4, where a perturbation rate
of 0 represents the clean graph. With the perturbation rate
increasing, the deviation of the curves away from the center
line of zero (absolute fairness) indicates increased unfairness.
Based on the results, we make the following observations:

On Pokec z/n we see that out of the four strategies, DD
and EE result in a consistent change in SPD, while DE
and ED have no significant influence. These observations are
also valid for DBLP, except for EE and DE. In particular,
EE appears to have a minor effect on DBLP, while DE
causes a clear shift in SPD. We attribute this to different
generative processes of the original networks. For example,
Pokec z/ n have a relatively high intra-group edge density,
while DBLP has a high intra-label edge density (Table II).
Hence, adding edges among the same labels may show differ-
ent performance in the empirical networks. Overall, DD is the
most effective on all three datasets: DD(y1s1,y0s0) increases
SPD while DD(y1s0,y0s1) decreases SPD. Similar to the
synthetic graphs, the performance of DD strategy drops for
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Fig. 4. FA-GNN evaluation with GCN on empirical datasets. We show
the three fairness measures in terms of increased perturbation rate, i.e.,
statistical parity difference (SPD), equality of opportunity difference (EOD),
and equalized odds difference (EQD). The arrows show where the result
becomes more unfair. Each line refers to a linking strategy between two
subsets (or within one subset for EE). We notice that DD achieves the most
significant shift in all fairness metrics. EE achieves a slight change on Pokec
datasets, while DE achieves a slight change on DBLP. The figure shows that
DD is the most effective linking strategy, and that the results of EE and DE
differ based on the input graph.

high perturbation rates. We also attribute that to the high
heterophily rate (or “good heterophily”) attained at this stage.
For example, DD(y1s1, y0s0) decreases the label homophily
ratio of nodes belonging to y1s1 in DBLP from 0.43 at
perturbation rate 0.10 to 0.34 at perturbation rate 0.30. As [22]
suggests, we assume that at this level, y1s1 nodes get a more
distinct neighborhood and hence a lower error rate.

Our analysis (Sections III-C and III-D) was limited to
statistical parity difference. Fig. 4 shows that FA-GNN also
degrades fairness in terms of EOD and EQD. This shows the
effectiveness of FA-GNN method in degrading GNN’s fairness
on various fairness metrics.
Various victim GNN models. Next, we compare the attack
performance of statistical parity difference on four more victim
GNN models, i.e., GAT, GraphSAGE, FairGNN, and NIFTY.
We present the results on the three datasets with varying
perturbation rates in Fig. 5. The results show that FA-GNN
is effective in attacking the fairness of various GNN models,
where DD strategy consistently increases unfairness. DD strat-
egy can even degrade the fairness of the fairness-enhancing
FairGNN and NIFTY models. We also observe that the attack
performance on GAT show a large standard deviation on
the Pokec n/z. This could be due to the instability brought
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Fig. 5. FA-GNN evaluation with different GNN models on empirical datasets.
We show the statistical parity difference (SPD) in terms of increased
perturbation rate. The arrows show where the result becomes more unfair.Each
line refers to a linking strategy between two subsets (or withing one subset
for EE). DD achieves the most significant shift in SPD.

by the small number of attention heads and the complex
hyperparameters tuning required for training the model.

Summing up, the results show that FA-GNN is effective in
terms of different fairness metrics on different GNN models.
Hence, FA-GNN degrades the fairness of various GNN models
without prior knowledge on the victim GNN model. It is
also worth noting that for the FairGNN and NIFTY models,
which are intentionally designed to enhance fairness, FA-
GNN is still effective in degrading the fairness. Especially
for NIFTY with a robust design against random perturbations
on node sensitive attributes and network structure, FA-GNN
still shows a significant increase in SPD for all datasets. This
observation supports not only effectiveness but also robustness
of the attack in degrading GNNs’ fairness even under certain
fairness-enhancing GNN models.
Attack outcome. In Figures 4 and 5 we observe that GNNs
generate unfair prediction results even for the clean graphs.
Note that for all the fairness metrics, any deviation from 0
irrespective of the sign, indicates unfairness with respect to
one group or the other. Interestingly, the fairness results on
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Fig. 6. FA-GNN efficiency analysis. The x-axis shows the percentage of the
labeled nodes available to FA-GNN. The y-axis shows the statistical parity
difference (SPD) of a GCN model trained on the perturbed graph. It shows
that FA-GNN degrades fairness even at a low percentage of labels. More
labeled nodes increase the influence of FA-GNN on SPD, especially with DD
strategy.

the clean graph is already an indicator of how the attack
unfolds with more perturbations. This means that it is easier
for the attack to exacerbate the already existing disadvantage
rather than attacking the advantaged group. For example, GCN
in Fig. 4 shows a negative SPD on clean Pokec z, so it’s
easier for strategies that reduce (signed) SPD to make fairness
even worse. In particular, DD(y1s0,y0s1) on Pokec z reaches
|SPD| ∼ 0.2 at a low perturbation rate of 0.1 compared
to DD(y1s1,y0s0) that reaches a similar |SPD| at a higher
perturbation rate of 0.2.

B. Efficiency of attacks

We evaluate the efficiency of FA-GNN in terms of the
amount of labeled data available to the attacker. Note that
in our setting, the attacker has access to ground truth labels
only for a subset of nodes. To that end, we consider varying
percentages of labeled nodes available to the surrogate GCN:
from 10% to 50% with a 10% increment. Recall that FA-
GNN uses these labeled nodes to train a surrogate model and
predict the labels of the unlabeled nodes. We keep the ratios
of labeled data for the victim GNN model unchanged: 50%
training, 25% validation and 25% testing. The perturbation
rate is fixed at 0.15 and GCN is considered as the victim
model which is trained on the perturbed network. We report
the statistical parity of the GCN’s predictions in Fig. 6.

From the results, we observe that, 1) efficiency: with a small
percent of available labeled data, i.e., 10%, FA-GNN already
degrades the GCN’s fairness to a large extent. This indicates
that FA-GNN can efficiently harm GNN’s fairness with very
limited access to the information on true labels; 2) influence
of labeled data: there is no obvious increase in SPD with
increasing number of labeled nodes, except for DD strategy
on Pokec z/n, where the performance slightly improves with
more labeled nodes. We also observe similar results for EOD
and EQD. This demonstrates that the availability of more
labeled nodes does not necessarily lead to more successful
fairness attacks.
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Fig. 7. Comparative evaluation of FA-GNN against baselines. We compare
FA-GNN to existing adversarial attacks on empirical datasets in terms of
absolute statistical parity (|SPD|) and classification accuracy with increased
perturbation rate. The result shows that existing attacks do not have a
significant impact on fairness compared to FA-GNN. In terms of accuracy,
FA-GNN does not have a significant effect compared to the SotA PR-BCD [9].

C. Comparative analysis of attacks

We evaluate a baseline attack method (Random) and two
accuracy-targeting attack methods (DICE, PR-BCD) in de-
grading GCN’s fairness. We compare the results with FA-
GNN’s DD strategy, i.e., y1s1-DD and y1s0-DD. We report
both absolute statistical parity difference |SPD| and node
classification accuracy on empirical datasets in Fig. 7. Higher
|SPD| implies more unfair predictions.

From the results, we observe that: 1) fairness: Random and
accuracy-targeting attack methods have only little impact on
the fairness results in terms of |SPD| score. Compared to
the baselines, FA-GNN strategies are much more effective in
degrading the fairness results of GCN. We also make similar
observations for |EOD| and |EQD|; 2) model performance
in accuracy: While Random, DICE, and FA-GNN show no
significant drop in accuracy, the SotA accuracy-targeting PR-
BCD significantly degrades model performance with a large
drop in accuracy.

Summing up, successful attacks on GNNs’ accuracy do
not automatically translate to attacks on GNNs’ fairness.
Moreover, FA-GNN only has a marginal effect on the accuracy
across all the datasets. This indicates that these fairness attacks
can maintain a relatively good performance of the GNN model,
making them less likely to be detected by a defender (more
deceptive), at least based on model performance.

V. DISCUSSION

In this section, we point out the limitations and discuss the
implications of our results.

A. Limitations

Analyses. Our analysis was limited to statistical parity and
hinges on assumptions that hold in some real-world networks.
In particular, we have assumed increasing error rates of



involved subsets, and we have neglected uninvolved subsets.
We realize that this is an approximate analysis that is limited to
some real-world scenarios. We believe that a more generalized
analysis can be reached in the future. Further, we only analyze
the attack’s influence on the GNN fairness from the perspective
of edge distributions. However, several other factors can im-
pact fairness, such as label and sensitive attribute distributions,
and node features. Nevertheless, the results of our experiments
on synthetic and real-world data open up the opportunity of
several questions about the interplay between GNN fairness
and the graph structure.
Alternate effective attacks. We base the attack strate-
gies on structural perturbations through injecting edges.
Rewiring/deleting edges, injecting nodes and poisoning node
features might also lead to effective attack strategies on fair-
ness. Besides, we focus on injecting adversarial edges based
on sensitive attributes and labels. These injection strategies
could be extended by considering node feature similarity as a
third contributing factor. We believe that designing an attack
that hurts fairness maximally requires separate research efforts,
as our paper focuses on introducing the problem of fairness
attacks on GNNs.

B. Implications

Deceptiveness of attacks. Our results show that fairness
attacks can significantly degrade prediction fairness without
having a significant impact on prediction accuracy. This
demonstrates that checking for model accuracy might not be
sufficient for detecting fairness attacks. If model fairness is
not monitored, such attacks can go unnoticed, exacerbating
the consequences for certain groups.
The trap of inter-group links. Our analysis shows the
vulnerability of GNNs both to fairness attacks and to non-
adversarial edge creation in the network. The underlying
generative process of edges might conform to a certain linking
strategy (such as DD), which could also result in unfair
predictions. For example, it is plausible that encouraging links
among, e.g. different demographic groups, can lead to an
improvement of some notion of fairness. In fact, some related
work assumes or hints that inter-group linking promotes fair-
ness of predictions [24], [31]. Counter-intuitively, our results
show that such linking might increase the disadvantage of
an already disadvantaged group. This observation suggests
that monitoring edge creation processes in networks might be
warranted when aiming to maintain fairness of predictions. It
also highlights the challenges of conflicting notions of fairness,
i.e. where increasing some notion of fairness may degrade
fairness of predictions as a side effect.
Defense against FA-GNN. Besides analyzing fairness attacks
on GNNs, our work highlights the urgency of developing
counter measures against such attacks. As a first step, we
have evaluated state-of-the-art fairness-enhancing frameworks
(FairGNN and NIFTY) and showed that they cannot defend
against FA-GNN. We further evaluate DropEdge [29] and a
modified version of it that drops random DD edges. We do
not see any significant improvement in fairness compared to

GCN on the empirical datasets. Therefore, we believe that
defending against FA-GNN requires better-tailored designs.

VI. RELATED WORK

In this work, we build on the following streams of research.
Adversarial attacks on graphs. Adversarial attacks on
graphs [16] (and GNNs in particular [14], [20], [41], [44],
[45]) have been mainly concerned with reducing the model
accuracy. The key idea involves designing structural perturba-
tions (addition or removal of edges or nodes) on the underlying
network or manipulating the node features in order to corrupt
the accuracy of predictions. The models mostly differ with
respect to the type of attack, type of perturbation, attacker’s
goal and attacker’s knowledge [16]. However, adversarial
attacks targeting fairness of prediction results, to the best of
our knowledge, have largely remained unexplored.
Fairness in graph learning. With machine learning algo-
rithms being deployed across different real-world applications
involving humans, bias in algorithmic decision-making has
received increasing attention. As graph models have gained
popularity in research and industry, a body of work has devel-
oped to reduce the bias in node representation and predictions
on several graph mining tasks. In this direction, FairWalk [28]
introduces a modified random walk embedding approach to
reduce the bias in link prediction. [3] propose an adversarial
training based method to counter bias in graph embeddings, al-
beit without node features. [21] also propose to learn fair node
embeddings with graph counterfactual fairness. For GNNs in
particular, FairGNN [6] proposes a general adversarial learning
based setup to mitigate bias, given limited access to the
sensitive attribute information. NIFTY [1] considers the notion
of counterfactual fairness and introduces a framework to learn
both fair and stable node representation, which aims to ensure
the stability of inference results to perturbations of sensitive
attribute values. Finally, [19] provides insights on the relation
between the network structure and the subgroups marginalized
by GNNs.
Attacks on fair machine learning. A growing body of work
has been studying the robustness of more traditional machine
learning models to attacks on fairness [5], [26], [27], [30].
Solans et al. [30] introduced the idea of designing adversarial
attack strategies targeting fairness of machine learning models.
The authors develop a gradient-based poisoning attack aimed
at introducing classification disparities among different groups
in the data. Mehrabi et al. [26] propose two families of data
poisoning attacks targeting fairness (anchoring and influence
attacks), which inject poisoned data points aiming to degrade
fairness. Chhabra et al. [5] present an adversarial attack
strategy targeting the fairness of clustering algorithms.

To the best of our knowledge, our work is the first to
investigate adversarial attacks targeting the fairness of GNNs.
Arguably [26], and [30] are the most related to our work, as
they aim to design data poisoning attacks targeting fairness
but not on graph data.



VII. CONCLUSION

In this paper, we presented adversarial attack strategies that
target the fairness results of graph neural network (GNN)
based node classifier models. We started by defining fairness
attacks on GNNs and describing adversarial strategies that
degrade fairness. Then, we provided a qualitative analysis to
understand the consequences of these adversarial strategies
on the fairness of GNN predictions. We illustrated these
consequences on synthetically generated graph datasets. Our
evaluations on empirical datasets showed that fairness attacks
significantly degrade the fairness of node classification results
without a significant drop in accuracy. We further empirically
demonstrated that the presented strategies could be success-
fully extended to several GNN models such as GCN, GAT,
GraphSAGE, and even inherently fair models like FairGNN
and NIFTY. Although developed with statistical parity in mind,
the proposed strategies can have similar effects on other fair-
ness metrics like equality of opportunity and equalized odds.
Our work demonstrates the vulnerability of GNNs to simple
structural perturbation based adversarial attacks on fairness.
Designing methods that improve the fairness of GNNs while
being robust against such adversarial attacks should be a
pressing concern for future research.
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APPENDIX A
MODEL IMPLEMENTATIONS

GNN models. For GCN, GAT, and GraphSAGE, we adopt
the implementations provided in the DGL package [37]. For
FairGNN [6] and NIFTY [1], we adopt the implementation
provided by the authors. For all baselines, we use the same
random seeds to produce the same training, validation, and
test sets.
Graph Attack Baselines. For Random and DICE, we adopt
the implementation provided in the deeprobust package [18].
For PR-BCD [9], we use the implementation provided by the
authors.
Hyperparameters. The hyperparameters α and β in FairGNN
for balancing the loss functions are set to 2 and 0.1, respec-
tively. For the victim GNN model training, we randomly pick
50%, 25%, 25% of labeled nodes as training set, validation
set, and testing set. We train all GNN models both on the
clean networks and attacked networks with a learning rate of
0.001. For GAT on Pokec datasets, we use a dropout of 0.8
and a weight decay of 1.9e-2, for all the other models, we set
dropout as 0.6, and weight decay as 5e-4. For the surrogate
GCN, we use two hidden layers with 16 dimensions for the
first hidden layer, and we train the model for 500 epochs with
a learning rate 0.01, weight decay 5e-4, and droupout 0.5.

APPENDIX B
EXTENDED ANALYSIS

Results on heterophilic graphs. In our analysis (Sec-
tion III-C), we assume that the linking of two subsets from
different classes increases the prediction error rates on these
subsets. Here, we aim to relax this assumption by considering
a case where linking different classes decreases the prediction
error rates on both subsets. This scenario is possible if the
original network does not have structural features that help
the classifier distinguish between two subsets. A specific
example is when two subsets of different classes have a similar
neighborhood distribution in the clean graph [22]. Then such a
linking strategy makes two subsets of nodes more distinguish-
able for the classifier, hence improving the prediction on both
subsets. For linking subsets of the same class, we consider
that the error rate will increase as they will become less
distinguishable. A hypothetical case where this can happen is
when the same-class subsets become more similar to a subset
of another class in terms of neighborhood distribution. Having
similar neighborhood distributions can make the respective
subsets indistinguishable [22]. We reconsider our strategies
and analyze the statistical parity difference.

SPD =
FPs0 − FNs0

ns0

− FPs1 − FNs1

ns1

+
ny1s0

ns0

− ny1s1

ns1

Again, we apply the following strategies to y1s1

(DD) ∆FPs=0 < 0,∆FNs=1 < 0 ⇒ ∆SPD < 0 and the
attack is in favor of s1.

(DE) ∆FPs=1 < 0,∆FNs=1 < 0 the sign of ∆SPD < 0
still depends on the error rate of each subset.
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Fig. 8. Fairness attacks on heterophilic synthetic graph. We show the statistical
parity difference (SPD) (top) and error rates (bottom) of FA-GNN strategies
on heterophilic synthetic graph. (Top) Each figure corresponds to a linking
strategy applied on subset y1s1.While DE and ED do not have a targeted
influence on SPD, DD decreases SPD, and EE only increases it at the
beginning. (Bottom) FPRsj and FNRsj are the false positive and negative
rates on subset sj . Attacks that decrease label homophily (DD and DE)
decrease error on the involved subsets (FNRs1 , FPRs0 with DD and
FNRs1 , FPRs1 with DE). Attacks that increase label homophily (ED and
EE) increase the error rates on the involved subsets (FNRs1 , FNRs0 with
ED and FNRs1 with EE at the beginning). This shows that for heterophilic
graphs, DD and EE are still effective attacks.

(ED) ∆FNs=0 > 0,∆FNs=1 > 0 the sign of ∆SPD < 0
still depends on the error rate of each subset.

(EE) ∆FNs=1 > 0 ⇒ ∆SPD > 0 and the attack is in favor
of s0.

To simulate this scenario, we perform the same experiments
on synthetic datasets described in Section III-D. However,
in this setup, we start with a heterophilic graph: the edge
density is 0.0016 for subsets of the same class and 0.004 for
subsets of opposite classes. Figure 8 shows the statistical parity
difference and the error rates of this simulation and supports
our hypotheses. In this setup, EE only shows an increase in
FNRs1 at the beginning. This could be due to y1s1 obtaining
a similar neighborhood distribution to one subset and then
gaining its unique neighborhood distribution.
Results on random graphs. On random graphs, we generally
see similar results, except that error rates do not increase with
same-class linking (ED/EE).


