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ABSTRACT

Recent work has shown that graph neural networks (GNNs) are

vulnerable to adversarial attacks on graph data. Common attack

approaches are typically informed, i.e. they have access to informa-

tion about node attributes such as labels and feature vectors. In this

work, we study adversarial attacks that are uninformed, where an

attacker only has access to the graph structure, but no information

about node attributes. Here the attacker aims to exploit structural

knowledge and assumptions, which GNNmodels make about graph

data. In particular, literature has shown that structural node central-

ity and similarity have a strong influence on learning with GNNs.

Therefore, we study the impact of centrality and similarity on adver-

sarial attacks on GNNs. We demonstrate that attackers can exploit

this information to decrease the performance of GNNs by focusing

on injecting links between nodes of low similarity and, surprisingly,

low centrality. We show that structure-based uninformed attacks

can approach the performance of informed attacks, while being

computationally more efficient. With our paper, we present a new

attack strategy on GNNs that we refer to as Structack. Structack

can successfully manipulate the performance of GNNs with very

limited information while operating under tight computational

constraints. Our work contributes towards building more robust

machine learning approaches on graphs.
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1 INTRODUCTION

Graph neural networks (GNNs) are state-of-the-art models for tasks

on graphs such as node classification [13], link prediction [31] and

graph classification [9]. Recent work has shown that GNNs are

vulnerable to adversarial attacks, which can cause GNNs to fail by

carefully manipulating node attributes [16], graph structure [17, 34]

or both [33]. For example, adversarial attacks on social networks

can add links via fake accounts, or change the personal data of

a controlled account. Most existing attacks [6, 16, 17, 30, 33, 34]

assume that information about node attributes (e.g., demographics

of users) are available to the attacker. In practice however, attackers

have limited access to such attribute information. We thus differ-

entiate between two cases: the informed case where both graph

structure and node attributes are available to the attacker, and the

uninformed case where only information about the structure is

available (see Figure 1).

Objectives. In this work, we investigate uninformed adversarial

attacks that aim to reduce the overall accuracy of node classification

with GNNs bymanipulating the graph structure. Our aim is to study

(i) potential strategies for uninformed attacks and (ii) how effective

they are in practical settings.

Approach. Insights in [12, 16, 34] have shown a considerable

influence of node degree and shortest paths on GNN robustness.
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Figure 1: Illustration of Structack on GNN classification. In (a) we show a standard GNN classification with all node features

and labels available to the algorithm. In (b) we depict an informed attack, which has access to the same information that the

GNN classification task itself has. Based on this information, adversarial edges are added to attack GNNperformance. In (c), we

show an uninformed attack strategy, i.e. an attack that has no access to information about node attributes (labels, features), but

only to the structure of the graph. A naive strategy could add edges based on topological graph features, for example add edges

between pairs of nodes with high centrality or high similarity. In (d), we show a Structack attack which also has no access to

information about node attributes, but attacks more successfully by adding edges between nodes with low centrality and low

similarity. Structack approaches the performance of informed attacks such as Metattack [34] with less available information.

However, these insights are not well investigated. Therefore, we fur-

ther inspect the effect of degree centrality and shortest path lengths

on GNN adversarial attacks. First, we theoretically show that with

standard degree normalization, low-degree neighbors surprisingly

have more influence on a node’s representation than higher-degree

neighbors. Second, we discuss the results showing the dependency

of GNNs on links within graph communities [10, 14], which are

ubiquitous in real-world graphs. Based on that, we argue that ad-

versarial edges should link nodes with longer paths between them.

Experimentally, we verify these insights on degrees and distance

through simulating attacks on empirical datasets. We then intro-

duce our uninformed structure-based adversarial attack (Struc-

tack), which generalizes these findings, and injects links between

nodes of low structural centrality and similarity. Finally, we eval-

uate Structack compared to state-of-the-art attacks in terms of (i)

reducing GNN accuracy, (ii) computational efficiency, and (iii) the

ability to remain undetected.

Contribution and Impact. We introduce Structack1, a novel

structure-based uninformed adversarial attack on GNNs. In ex-

periments on empirical datasets, Structack performs on a level that

is comparable to more informed state-of-the-art attacks [30, 34],

while using less information about the graph and significantly lower

computational requirements. We give insights on the detection of

attacks, such as Structack, by analyzing their ability to be unde-

tected. With our work, we introduce a new unstudied category of

attacks that could be applied to real-world networks. Our findings

1We provide the implementation Structack and the experiments for reproducibility at
https://github.com/sqrhussain/structack.

highlight the vulnerability of GNNs to uninformed attacks that have

no knowledge about node attributes or the attacked model. Hence,

our work contributes toward building more robust predictive and

defensive models for graph data.

2 BACKGROUND

Preliminaries. Let 𝐺 = (𝐴,𝑋,𝑌 ) be an attributed undirected

graph with an unweighted adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 , a fea-
ture matrix 𝑋 ∈IR𝑛×𝑓 , and a label matrix 𝑌 ∈ {0, 1}𝑛×|𝐿 | , where 𝐿
is the set of labels. We refer to the set of nodes as𝑉 = {1, ..., 𝑛}, and
the set of edges as 𝐸, where |𝐸 | =𝑚 and (𝑖, 𝑗) ∈ 𝐸 iff 𝐴𝑖, 𝑗 = 1. Each

node 𝑢 ∈ 𝑉 has a feature vector 𝑥𝑢 ∈IR𝑓 , where 𝑓 is the feature vec-
tor dimension, and a label 𝑦𝑢 ∈ 𝐿. The feature vectors are encoded
in 𝑋 , where 𝑢’s feature vector 𝑥𝑇𝑢 is the row 𝑢 of matrix 𝑋 . The

labels of all the nodes are accordingly encoded in 𝑌 as well, with

one-hot encoding in each row. We use the notation 𝐷 to refer to

the degree matrix, a diagonal matrix where 𝐷𝑖,𝑖 = 𝑑𝑖 is the degree

of node 𝑖 .

Graph neural networks. GNNs are multi-layer machine learning

models that process graph-structured data. They follow a message

passing and aggregation scheme, where nodes aggregate the mes-

sages received from their neighbors and update their representation

on this basis. For a GNN with 𝐾 layers, Kipf and Welling [13] de-

scribe the propagation rule in a simple form as follows

𝐻 ′(𝑘+1)
= 𝜎 (𝐷̃− 1

2 𝐴̃𝐷̃− 1
2𝐻 ′(𝑘)𝑊 (𝑘) ) (1)

for 𝑘 = 0, 1, ..., 𝐾 − 1, where 𝐴̃ = 𝐴 + 𝐼 , 𝐷̃ = 𝐷 + 𝐼 , 𝐻 ′(0)
= 𝑋 are

the given node features,𝑊 (𝑘) is a trainable weight matrix, and 𝜎
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Figure 2: Impact of degree and distance on adversarial attacks onGNN classification. Top: GNN accuracywhenwe link nodes of

varying degrees to other nodes of varying degrees as well, i.e., low-to-low degrees (top-left corner) up to high-to-high (bottom-

right corner). Linking nodes with lower node degrees appears to result in more effective attacks. Bottom: GNN accuracy when

adding edges between pairs of nodes with the lowest distance up to the highest distance. Linking nodes with higher distance

(lower similarity) results in a more effective attack. Degrees and distances are grouped into 10-quantiles. The presented accu-

racy comes from training a GNN model (namely GCN[13]) on the perturbed graphs of 5 empirical datasets.

is an activation function, which is typically non-linear, e.g., ReLU.

This formula is usually written as 𝐻 ′(𝑘+1)
= 𝜎 (𝐴𝐻 ′(𝑘)𝑊 (𝑘) ) with

𝐴 = 𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 .

Node classification with GNNs. For node classification, we set the

activation function of the last layer of the GNN to softmax

𝑍 = 𝑓 (Θ;𝐴,𝑋 ) = softmax(𝐴𝐻 ′(𝐾−1)𝑊 (𝐾−1) ), (2)

whereΘ = {𝑊 (0) , ...,𝑊 (𝐾−1) } is the set of model parameters which

we aim to optimize, and 𝑍𝑢,𝑐 represents the model confidence that

a node 𝑢 belongs to label 𝑐 . Given the labels of a subset of nodes

𝑉 ′ ⊆ 𝑉 , the goal of node classification is to find the labels of the

unlabeled nodes 𝑉 \ 𝑉 ′. To achieve this with GNNs, a common

choice is to minimize the cross entropy error in 𝑉 ′

L(𝑌, 𝑍 ) = −
∑

𝑢∈𝑉 ′
ln𝑍𝑢,𝑦𝑢 , (3)

where 𝑍𝑢,𝑦𝑢 represents the model confidence that node 𝑢 belongs

to its ground-truth class 𝑦𝑢 .

Adversarial attacks on GNNs. GNNs are prone to global adver-

sarial attacks on the graph structure (i.e., the adjacency matrix

𝐴) [11]. These attacks aim to reduce the overall (i.e., global) node

classification accuracy of a GNN model. To that end, these attacks

follow different strategies to perturb the graph structure by adding

or removing up to a budget of 𝑘 edges.

3 IMPACT OF THE STRUCTURE ON ATTACKS

This section presents examples of graph structural properties and

analyzes their effect on adversarial attacks on graph structure. Find-

ings from related work show that node degrees have an impact on

graph controllability [15] and on the selection of targeted nodes

in adversarial attacks on node attributes [16]. Besides, an analysis

of Metattack (a state-of-the-art attack) in [34] shows a slight ten-

dency of the attack to link pairs of nodes with longer shortest paths

(i.e., longer distances2). However, these works do not particularly

focus on the impact of node degrees and distances on adversarial

attacks or the reasoning behind it. Therefore, in the following anal-

ysis, we study the impact of node degrees and distances on GNNs

from a theoretical perspective, and consequently verify this impact

empirically.

3.1 Impact of degree and distance

Node degree impact. We aim to theoretically assess the role of

node degree on the propagation in GNNs (Equation 1). For this

study, we investigate the common degree normalization form as

in Equation 1, i.e., normalization by the degree square root of two

adjacent nodes. Using other less common forms of degree normal-

ization or no degree normalization can be investigated in future

work. We first simplify the update rule given in Equation 1 by ig-

noring the non-linearity in the intermediate layers, i.e., linearizing

2We refer to shortest path lengths as distances for brevity.



the equation (inspired by [33] and [28])

𝐻 ′(𝐾) := softmax(𝐻 (𝐾)𝑊 ) = softmax(𝐴𝐾𝑋𝑊 ), (4)

where weight matrices𝑊 (𝑘) for 𝑘 ∈ {0, 1, .., 𝐾 − 1} are absorbed
by𝑊 =𝑊 (0)𝑊 (1) ...𝑊 (𝐾−1) ∈IR𝑓 ×|𝐿 | . We use 𝐻 (𝑘)

= 𝐴𝑘𝑋 ∈IR𝑛×𝑓
to represent node intermediate representations at layer 𝑘 in the lin-

earized model. Each row 𝑢 of matrix𝐻 (𝑘) , denoted as (ℎ (𝑘)𝑢 )𝑇 ∈IR𝑓 ,
is the intermediate representation of node 𝑢 at layer 𝑘 . As 𝐻 (𝑘)

=

𝐴𝐻 (𝑘−1) , we can write the representation in layer 𝑘 of node 𝑢 (i.e.,

ℎ
(𝑘)
𝑢 ) in terms of the representations of its neighboring nodesN(𝑢)
in the previous layer 𝑘 − 1 as follows

ℎ
(𝑘)
𝑢 =

∑

𝑣∈N(𝑢)

1
√
𝑑𝑢𝑑𝑣

ℎ
(𝑘−1)
𝑣 . (5)

To show the impact of the degree of a specific neighbor𝑤 ∈ N (𝑢)
on the node 𝑢, we compute the derivative of 𝑢’s final representa-

tion ℎ
(𝐾)
𝑢 with respect to 𝑤 ’s initial representation ℎ

(0)
𝑤 (i.e., the

input features for node𝑤 ), that is, the Jacobian matrix J𝑢,𝑤 ∈IR𝑓 ×𝑓

with 𝐽𝑢,𝑤𝑖,𝑗 = 𝜕ℎ
(𝐾)
𝑢,𝑖 /𝜕ℎ (0)𝑤,𝑗 . Equation 5 shows that the 𝑖-th vector

component of ℎ
(𝑘)
𝑢 : 𝑘 > 0 (i.e., ℎ

(𝑘)
𝑢,𝑖 ) only depends on the vector

component ℎ
(𝑘−1)
𝑤,𝑖 of the neighbor 𝑤 , and not on any other com-

ponent ℎ
(𝑘−1)
𝑤,𝑗 with 𝑖 ≠ 𝑗3. By induction, we can show that, for

𝑤 ∈ N (𝑢), the 𝑖-th vector component of ℎ
(𝑘)
𝑢 only depends on the

𝑖-th vector component of ℎ
(0)
𝑤 . This fact leads to the Jacobian matrix

being diagonal. Therefore, it is sufficient to compute the partial of

an arbitrary component 𝑖

𝐽𝑢,𝑤𝑖,𝑖 =

𝜕ℎ
(𝐾)
𝑢,𝑖

𝜕ℎ
(0)
𝑤,𝑖

=

𝜕(∑𝑣∈N(𝑢)
1√
𝑑𝑢𝑑𝑣

ℎ
(𝑘−1)
𝑣 )

𝜕ℎ
(0)
𝑤,𝑖

. (6)

By applying the chain rule, we get

𝐽𝑢,𝑤𝑖,𝑖 =

∑

𝑣1∈N(𝑢)

1
√

𝑑𝑢𝑑𝑣1

𝜕ℎ
(𝐾−1)
𝑣1,𝑖

𝜕ℎ
(0)
𝑤,𝑖

(7)

By repeatedly applying the chain rule 𝐾 times, we end up at the

partial of a node’s initial representation ℎ
(0)
𝑣𝐾 ,𝑖

in terms of𝑤 ’s initial

representation ℎ
(0)
𝑤,𝑖 , that is

𝜕ℎ
(0)
𝑣𝐾 ,𝑖

𝜕ℎ
(0)
𝑤,𝑖

=

{

1 : 𝑣𝐾 = 𝑤

0 : 𝑣𝐾 ≠ 𝑤.
(8)

When we propagate this back to Equation 7, we arrive at

𝐽𝑢,𝑤𝑖,𝑖 =

∑

𝑣1∈N(𝑢)

1
√

𝑑𝑢𝑑𝑣1
(...(

∑

𝑣𝐾 ∈{𝑤 }

1
√

𝑑𝑣𝐾−1𝑑𝑣𝐾
)...) (9)

We can rewrite Equation 9 for each (not necessarily simple) path of

length 𝐾 between 𝑢 and𝑤 , that is, with 𝐾 − 1 intermediate nodes

[𝑣1, 𝑣2, ..., 𝑣𝐾−1] ∈ Paths(𝑢,𝑤, 𝐾), as follows

𝐽𝑢,𝑤𝑖,𝑖 =
1

√
𝑑𝑢𝑑𝑤

∑

[𝑣1,𝑣2,...,𝑣𝐾−1 ] ∈Paths(𝑢,𝑤,𝐾)

𝐾−1
∏

𝑖=1

1

𝑑𝑣𝑖
(10)

3This argument is possible due to linearizing the Equation 1.

Table 1: Dataset statistics.

Dataset Nodes Edges Features Labels

Citeseer [24] 2,110 3,668 3,703 6
Cora [24] 2,485 5,069 1,433 7
Cora-ML [18] 2,810 7,981 2,879 7
Polblogs [1] 1,222 16,714 1,490 2
Pubmed [19] 19,717 44,325 500 3

This final term is 𝑂 ((𝑑𝑢𝑑𝑤)−1/2) in terms of the two neighbors

degrees. This shows that high-degree nodes have less impact on

the representations of their neighbors, and that the degree normal-

ization is the main reason. While the normalization is essential to

reduce the bias towards nodes with very high degree, e.g., hubs, it

can also make GNNs more vulnerable to attacks from nodes with

low degrees.

Node distance impact. To explain the impact of node distance on

attacks, we start by discussing the relationship between GNNs and

network communities. Then we infer the role of the distance in

this context. Communities are densely connected subgraphs, and

are very common in empirical networks, e.g., social networks and

co-author networks. The GNN update rule (Equation 1) is a special

form of Laplacian smoothing [14]. Crucially, GNNs assume that

nodes within the same community tend to share the same label

and have similar features [10, 14]. This indicates that linking nodes

from different communities effectively perturbs the GNN accuracy.

Findings in [3] show that nodes within similar communities tend

to have shorter paths between them. This supports that linking

nearby nodes is likely adding intra-community links, while linking

more remote nodes is likely adding inter-community links. There-

fore, we hypothesize that linking distant nodes would result in

more effective attacks.

3.2 Empirical validation

Next, we empirically verify the hypotheses from the previous analy-

sis on the datasets, summarized in Table 1. We perform perturbation

by adding edges to the graph following different strategies. Then

we observe the accuracy of training a GNN model on the perturbed

graph. We choose the well-known non-linear GCN [13] model4 to

empirically show that our theoretical analysis of a linearized GNN

model extends to a non-linear one. In the next experiments, we

have a budget of 𝑘 = ⌊𝑟 ×𝑚⌋ edges to add to the graph, where 𝑟 is

the perturbation rate which we set to 0.05.

Node degree. The first experiment aims to compare linking low-

degree nodes to linking high-degree nodes. We group the nodes

into 10 equal-sized subsets based on their degrees. For each pair of

subsets, we try adding 𝑘 adversarial edges between random pairs of

nodes in the two subsets and observe the GCN accuracy. We obtain

the results in Figure 2 (top). These results support our discussion

(Section 3.1) and show an increase in accuracy, i.e., a decrease in

attack effectiveness, when linking pairs of high-degree nodes. As a

4As the reader might notice, the analysis in Section 3.1 does not only apply to this
particular family of GNNs since feature propagation and normalization are necessary
components of GNNs. Our work studies SGC models theoretically and GCN models
empirically.



result, we assume that attacks are more effective when they link

pairs of low-degree nodes.

Node distance. The second experiment aims to compare linking

distant pairs of nodes to linking nearby pairs. We perform this ex-

periment in 10 trials, with trial 1 linking nodes with lowest distances

and trial 10 with highest distances. In each trial, we observe the

GCN accuracy after adding 𝑘 adversarial edges. In trial 𝑖 ∈ {1, .., 10},
for each adversarial edge (to be added), we randomly pick one node

𝑢 from the graph and attach one end of that edge to 𝑢. Then, we

group all the nodes in the graph into 10 equal-sized subsets based

on their distance from 𝑢. Finally, we link 𝑢 to a random node in the

𝑖-th subset. Figure 2 (bottom) depicts this comparison and shows

the accuracy of each trial. The figure suggests that linking distant

nodes results in more effective attacks than linking nearby nodes.

4 STRUCTACK

In this section, we introduce our attack strategy Structack

(Structure-based attack), built upon the findings from Section 3.

We outline the attacker’s goal, capabilities and knowledge, explain

the attack strategy, provide a complexity analysis, and discuss in-

sights on the detection of the attack.

4.1 Attacker’s capabilities and restrictions

In our setting, the attacker aims to minimize the overall GNN accu-

racy on node classification. We limit the knowledge of the attacker

to the adjacency matrix, as opposed to existing work [6, 16, 17, 30,

33, 34]. The attacker has no access to the features or the label of any

node. They also do not have any information about the attacked

GNNmodel or its parameters. We assume that the attacker is able to

add edges between any pair of nodes5 in the graph, up to a limit 𝑘 ,

called the budget. As a result, the attack generates a poisoned adja-

cency matrix𝐴′, where | |𝐴−𝐴′ | |0 ≤ 𝑘 . According to the taxonomy

suggested by [11], our attack is an untargeted (global) poisoning

attack on graph structure.

4.2 Attack strategy

The findings in Section 3 show the impact of low node degrees and

long node distances in the graph on adversarial attacks. Following

these findings, an efficient strategy to exploit this impact is to (1)

select nodes with low degrees, and (2) link pairs of nodes with high

distances. Node degree is a measure of node centrality, and distance

represents one form of node dissimilarity (e.g., Katz similarity [20]

gives higher weights to shorter paths). We generalize node degree

and distance to a diverse set of measures of centrality and similarity.

Therefore, Structack consists of selecting nodes with the lowest

centrality and linking these nodes so that the similarity between

linked nodes is minimized.

For a budget 𝑘 , Structack chooses 2𝑘 nodes with the lowest

centrality. We then split these nodes into two sets𝑈1 and𝑈2, both

of size 𝑘 , based on their centrality, i.e., 𝑈1 has the 𝑘 nodes with

lowest centrality. Then Structack finds the matching between nodes

in 𝑈1 and 𝑈2, which minimizes the sum of similarities between

the matched nodes. To solve this minimization problem, we use

5This ability might not directly translate to real-world attacks, but it is necessary
to study the extent of different attack approaches, including the baselines that we
evaluate as well.

the Hungarian algorithm. Finally, Structack adds edges between

matched nodes.

For selection and linking steps, we investigate different choices

of centrality and similarity measures (Table 2). Otherwise, we follow

conventional procedures, e.g., splitting lowest-centrality nodes in

order, and using the sum of similarities as a criterion for the match-

ing problem. Please note, investigating other splitting and matching

criteria can be interesting, e.g., using interleaving splitting. How-

ever, we leave this for future work as we are more interested in the

impact of centrality and similarity choices.

4.3 Complexity analysis

After computing the centrality for each node, obtaining the 2𝑘

lowest-centrality nodes for the splitting step requires O(𝑛 log𝑘)
time. At the final step of Structack, finding the optimal node match-

ing is a minimum cost maximum bipartite matching problem. We

solve this problem using the Hungarian algorithm, which has the

complexity of O(𝑘3) time.

In Table 2, we list the centrality and similarity measures we used

with their corresponding time and memory complexity. These mea-

sures are well defined in the literature, along with their complexity.

However, to make our paper self-contained, we explain essential

details about how we compute similarity and give the resulting

time complexity.

Community-based similarity: First, we perform community de-

tection using Louvain method [4], which splits the graph into 𝐶

disjoint communities. We then build a community similarity matrix

S ∈IR𝐶×𝐶 encoding the original density of edges, i.e., S𝑖, 𝑗 represents

the edge density of links between community 𝑖 and community 𝑗 .

Then we set the similarity between two nodes𝑢 and 𝑣 to the similar-

ity of their corresponding communities S𝐶𝑜𝑚𝑚 (𝑢),𝐶𝑜𝑚𝑚 (𝑣) , where
𝐶𝑜𝑚𝑚(𝑥) is the community of node 𝑥 as per Louvain method. For

the community-based similarity, the time complexity of Louvain

community detection is considered to be linear in the number of

edges on typical and sparse data [4] O(𝑚), and the edge density

computation step is also of order O(𝑚), making this similarity

calculation of order O(𝑚) as well.

Distance-based similarity: We use breadth-first search (BFS) to

get single-source shortest paths from each node in𝑈1 to all nodes

in𝑈2 (which, in the worst case, means to all nodes in the graph). We

choose BFS because we assume that the input graph is unweighted

as mentioned in Section 2. We restrict BFS sources to nodes in 𝑈1

since the distance between nodes outside𝑈1 and𝑈2 are not relevant

for Structack. For the shortest path length computation, and if we do

not consider parallelization, the BFS algorithm is repeated 𝑘 times

(once for each node in𝑈1), which gives a time complexity of𝑂 (𝑘𝑚).
Please note that a higher distance indicates a lower similarity.

Katz similarity: This notion is a measure of regular equivalence

of nodes [20] . It counts paths of all lengths and weighs them

differently, i.e., shorter paths with higher weights. We can write

Katz similarity matrix as
∑∞
𝑖=0 (𝛼𝐴)𝑖 , where 𝛼 is a constant which

needs to be less than the inverse of the largest eigenvalue of 𝐴. We

approximate the similarity matrix without matrix inversion using

inverse iteration until the matrix converges after 𝑡 iterations. With

sparse matrix multiplication, the time complexity turns into O(𝑡𝑚).



Table 2: Description of considered centrality/similarity met-

rics with their time and memory complexity. We list abbre-

viations for the metric names to use later in results tables. 𝑛

and𝑚 represent the number of nodes and edges in the graph

respectively, and 𝑘 is the attack budget. 𝑡 is the number of

iterations for computing Pagerank centrality and Katz sim-

ilarity.

Centrality metric Time complexity Memory complexity

Degree (DG) O(𝑚) O (𝑚)
Eigenvector (EV) [21] O(𝑚) O (𝑛 +𝑚)
Pagerank (PR) [22] O(𝑡𝑚) O (𝑛 +𝑚)

Betweenness (BT) [5, 21] O(𝑛𝑚) O (𝑛 +𝑚)
Closeness (CL) [7, 21] O(𝑛𝑚) O (𝑛 +𝑚)

Similarity metric Time complexity Memory complexity

Katz (Katz) [20] O(𝑡𝑚) O (𝑛2)
Community-based (Comm) O(𝑚) O (𝑚)

Distance-based (Dist) O(𝑘𝑚) O (𝑚)

The number of iterations goes down to the desired precision of the

similarity. For a typical choice of 𝛼 = 0.85, we obtain a precision of

10−6 with 𝑡 = 100 iterations6.

4.4 Insights on attack detection

Structack selects nodes with low centrality, which typically have

few edges. Therefore, the attack can cause a significant change in

the degree distribution. We hence suggest observing the changes

in the degree distribution, similar to [33].

Moreover, Structack links pairs of nodes with low structural sim-

ilarity, which are likely to have few common neighbors. The local

clustering coefficient of a node is lower with fewer edges shared

among its neighbors [20]. Based on that, we expect that Structack

causes a significant change in the local clustering coefficients of

the nodes being linked. Therefore, we also suggest observing the

changes in the local clustering coefficient distribution.

We define two criteria to detect the attack by comparing the

original and the perturbed graphs. First, we test if the node degrees

of both graphs stem from the same distribution. Second, we test if

the local clustering coefficient values of both graphs also stem from

the same distribution. If values are assumed to stem from the same

distribution in both cases, we consider the attack to be unnoticeable.

5 EXPERIMENTAL EVALUATION

5.1 Adversarial attack evaluation

The goal of the experimental evaluation is to test the efficacy of

Structack perturbations on GNNs. To this end, we evaluate Struc-

tack against informed baseline attacks as well as the random (unin-

formed) baseline. Notice that our attacks as well as the evaluated

baselines apply structural perturbations only and not feature pertur-

bations. For a perturbation rate 𝑟 , we allow each attack to perturb

the graph by adding (or removing in case of some studied baselines)

a budget of 𝑘 = ⌊𝑟 ×𝑚⌋ edges. We evaluate each attack on three

different criteria: (i) Effectiveness in terms of GNN misclassification

rate, (ii) Efficiency in terms of computation time and memory re-

quirements, and (iii) Unnoticeability in terms of changes of degree

6This argument also applies for computing Pagerank which is also O(𝑡𝑚) .

and clustering coefficient distributions. With this evaluation, we

aim to demonstrate a performance trade-off of these three aspects.

5.2 Experimental setup

We evaluate 24 different combinations of (Structack) derived from

combining 6 different possibilities for node selection (including

random selection) with 4 different possibilities for node linking

(including random linking) as listed in Table 2. We include random

selection and random linking to evaluate whether the effectiveness

of certain centrality or similarity choices stem from randomness.

We perform the following evaluations on the 5 datasets described

in Table 1.

Effectiveness. To evaluate effectiveness (misclassification), we

train a GNN model on the perturbed graph and report the classifi-

cation accuracy on its test set. Aiming for more robust evaluation

(inspired by [25]), we use 5 different random splits (10% train, 10%

validation, and 80% test) for each dataset. Our GNN model of choice

is the well-known GCN [13] model, which we initialize 5 times

with different random weights for each perturbed input graph. For

the effectiveness evaluation, we set the perturbation rate to 0.05.

Efficiency. Another criterion for evaluating adversarial attacks

is their ability to efficiently use available resources in terms of

computation time and used memory. More efficient attacks have

a lower runtime and use less memory. Please note that we ran all

experiments on a machine running Linux Ubuntu OS version 16.04

with Intel Xeon E5-2630 Processor with 40 CPUs, 256GB RAM, and

a dedicated NVIDIA Tesla P100 16GB GPU. For these efficiency

experiments, we also set the perturbation rate to 0.05. If an attack

did not fit into the GPU memory for a particular dataset, we ran it

with CPU settings for that dataset.

Unnoticeability. To evaluate attack unnoticeability, we run each

attack for different perturbation rates 𝑟 ∈ {0.001, 0.002, 0.003, 0.004,

0.005, 0.0075, 0.01, 0.025,0.05, 0.075, 0.10, 0.15, 0.20}. We report re-

sults in terms of the critical perturbation rate 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , i.e., largest

𝑟 for which the attack is still deemed unnoticeable. We consider

the attack to be unnoticeable if the changes in the node degree

and local clustering coefficient values made by the attack are not

significant. A commonly used approach for comparing two node

degree distributions is the Two-Sample Kolmogorov-Smirnov sta-

tistical test (KS test) [2]. Therefore, we use the KS test to determine

whether two compared samples (original graph versus perturbed

graph) stem from the same distribution. We apply this test to ob-

tain the significance in change for both degree and local clustering

coefficient distributions. Here the null hypothesis of the KS test is

that two samples are drawn from the same continuous distribution.

We set the probability of rejecting the null hypothesis 𝛼 to 0.05.

Baselines. We evaluate the most effective combinations of Struc-

tack against the following baselines in terms of the three evaluation

criteria.

Random: A simple uninformed baseline attack that selects ran-

dom node pairs and adds an edge between them. This is the only

uninformed baseline against which we compare Structack.

DICE [27]: A simple heuristic, which is explicitly based on

disconnecting nodes with the same label and connecting nodes



with different labels. This attack is informed as it has access to node

labels.

Metattack [34]: State-of-the-art optimization-based attack on

graphs via meta-learning. It treats the adjacency matrix as a param-

eter of the optimization problem, which is minimizing the accuracy

of a surrogate model. Metattack does not require access to the GNN

model parameters, and uses the surrogate model instead.

PGD and MinMax [30]: State-of-the-art optimization-based

attacks on graphs. Both attacks apply projected gradient descent to

solve the optimization problem after convex relaxation. MinMax

attempts to build a more robust attack through attacking a re-

trainable GNN. These two attacks require access to the GNN model

parameters.

In addition to the graph structure, Metattack, PGD, and MinMax

have access to the feature vectors of all nodes and the labels of some

nodes (typically, nodes in the training set). Thus, these three attacks

are informed in our definition. These attacks involve randomization,

which is why we initialize each of them 5 times with different

random weights for each attack setting.

6 RESULTS AND DISCUSSION

Next we present evaluation results, discuss trade-offs, and outline

the limitations of our work. In the results tables, we use the abbre-

viations defined in Table 2 to describe the centrality and similarity

measures of Structack combinations.

Effectiveness. First, we apply Structack combinations to each

graph dataset and obtain the GCN accuracy. Then we compute the

average rank of each combination in terms of classification accu-

racy. We visualize the ranking in Figure 3 with a critical difference

diagram. The thick horizontal bars in this figure group together

the combinations with no significant difference7 in ranks between

them. The six lowest-ranked combinations (which involve random-

ness) perform significantly worse than the rest. This confirms that

the improvement of Structack does not stem from randomness. We

observe that the seven most effective combinations are not signif-

icantly different. Among these combinations, we frequently see

Pagerank centrality, degree centrality and Katz similarity, which

implies the effectiveness of these three measures. Node centrality

in Structack has a substantial impact on effectiveness, relative to

the node similarity. For example, performing selection with degree

or Pagerank centrality and linking at random (Degree.Random and

Pagerank.Random in Figure 3) seems to perform better than some

combinations that do not involve random linking.

As the seven most effective combinations do not differ signif-

icantly from each other, we consequently compare them to the

baselines as presented in Table 3. Structack combinations show a

comparable performance to state-of-the-art methods, although they

have no access to node attributes.

Efficiency. In Tables 4 and 5, we respectively show the runtime

and the memory consumption of our most effective Structack com-

binations and existing adversarial attack methods. We notice a

significant drop in runtime and memory consumption for Struc-

tack compared to the optimization-based attacks (Metattack, PGD,

7For details on the computation of significance, we refer to the documentation of the
R package scmamp https://cran.r-project.org/web/packages/scmamp/scmamp.pdf.

Table 3: Adversarial attack effectiveness. This table gives the

accuracy of a GCN model trained on the perturbed graph

generated by applying each adversarial attack (lower accu-

racy→more effective attack). Structack (in boldface) is com-

parable with the state-of-the-art attacks on most datasets

withminimumknowledge. According to aWilcoxon signed-

rank test, each Structack approach is significantly more ef-

fective than the uninformedRandomapproachwith 𝑝 < 0.01

(after Bonferroni correction). * Metattack could not run for

Pubmedwith 16GBGPU, anddidnotfinishwithCPU settings

after 3 weeks running

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

Clean 71.90±1.9 83.44±1.1 85.11±0.7 94.66±1.2 86.51±0.3

In
fo
rm

ed

DICE 70.63±1.8 80.09±2.1 80.74±2.4 82.44±6.1 83.32±2.6
Metattack 69.21±1.7 76.83±1.3 80.01±1.0 76.98±0.9 N/A*
MinMax 68.95±0.8 78.45±1.1 83.39±0.5 85.02±2.2 84.97±0.6
PGD 63.80±0.9 75.15±1.4 80.17±0.7 83.28±3.3 82.58±0.4

U
n
in
fo
rm

ed

Random 72.64±1.2 80.56±0.5 82.24±0.6 83.57±3.4 85.90±0.3
BT*Katz 71.83±1.0 78.77±0.5 80.27±0.7 76.41±1.8 84.38±0.2
DG*Comm 71.89±0.9 78.51±0.6 80.12±0.6 75.65±1.3 84.79±0.3
DG*Dist 71.66±1.0 78.80±0.5 80.15±0.5 78.87±2.0 84.55±0.3
DG*Katz 71.33±1.1 78.98±0.5 80.17±0.6 76.27±1.4 84.34±0.3
PR*Comm 71.67±1.0 78.85±0.5 80.51±0.6 75.25±1.4 84.54±0.4
PR*Dist 71.38±1.0 78.53±0.5 80.19±0.6 78.09±2.2 84.20±0.3
PR*Katz 71.67±1.0 78.40±0.5 80.06±0.7 75.99±1.6 84.08±0.3

Table 4: Runtime in minutes with 0.05 perturbation rate.

Structack is in boldface.

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

In
fo
rm

ed

DICE 0.05 0.07 0.13 0.08 3.07
Metattack 7.75 7.65 22.38 8.80 N/A
MinMax 12.83 13.03 13.68 12.58 2,645.87
PGD 12.15 12.08 12.35 11.10 1,569.55

U
n
in
fo
rm

ed

BT*Katz 3.33 5.12 7.42 3.87 379.00
DG*Comm 0.03 0.05 0.10 0.25 1.70
DG*Dist 0.05 0.10 0.23 0.82 8.08
DG*Katz 0.98 1.30 1.55 0.63 97.98
PR*Comm 0.05 0.08 0.15 0.27 1.90
PR*Dist 0.10 0.12 0.27 0.87 8.13
PR*Katz 0.93 1.32 1.52 0.72 93.28

and MinMax). These three attacks did not fit in the available GPU

memory for Pubmed, and therefore we ran them with CPU settings

for this dataset. For Structack combinations, the similarity measure

generally has a substantial effect on runtime and memory consump-

tion, with community-based similarity being the most efficient. An

exception to this rule is the runtime of Betweenness and Closeness

centralities. For example on Pubmed, Betweenness and Closeness

computation takes 325 and 66 minutes respectively, while the com-

putation of Katz similarity takes 100 minutes. The time complexity

of computing these two measures (Table 2) is O(𝑛𝑚) making them

impractically slow for large graphs.

Unnoticeability. We report the critical perturbation rate 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
for which the respective attack remains unnoticeable as per our

definition in Sections 5.2. We present 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 for each approach in

Table 6. For most datasets, Structack’s 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is on par or slightly

lower than the informed approaches. We also observe that the
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Figure 3: Comparison of Structack combinations’ effectiveness. This plot shows combinations from most to least effective

(lowest to highest GCN classification accuracy) presented from left to right. Thick horizontal bars represent no significant

difference between the combinations they mark. We find that the best seven combinations are not significantly different,

while being significantly better than the rest. We also see that the stronger impact lies in the choice of centrality with the

degree and Pagerank centralities with random linking outperforming half of the other combinations.

Table 5: Memory consumption in Megabytes with 0.05 per-

turbation rate. Structack is in boldface. * Snapshot taken af-

ter 3 weeks of running.

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

In
fo
rm

ed

DICE 313 1,623 1,213 1,230 773
Metattack 2,074 2,096 2,123 2,078 *58,394
MinMax 2,176 2,243 2,318 2,109 20,554
PGD 2,155 2,232 2,299 2,110 19,779

U
n
in
fo
rm

ed

BT*Katz 578 626 677 442 13,918
DG*Comm 316 322 337 403 901
DG*Dist 433 431 430 433 1,995
DG*Katz 556 587 662 440 13,918
PR*Comm 445 443 443 460 928
PR*Dist 445 443 442 450 2,021
PR*Katz 570 617 668 441 13,919

Table 6: Maximum unnoticeable perturbation rate. We eval-

uate unnoticeability in terms of critical perturbation rate

𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , which we define as as the maximum perturbation

rate for which the attack remains unnoticeable as per defi-

nition in Section 5.2. We present the results for 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 per

dataset and per adversarial attack. Structack is in boldface.

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

In
fo
rm

ed

DICE 0.0750 0.0500 0.0500 0.0100 0.0100
Metattack 0.0100 0.0100 0.0100 0.0040 N/A
MinMax 0.0750 0.0750 0.0750 0.0500 0.0040
PGD 0.1000 0.0750 0.0500 0.1000 0.0040

U
n
in
fo
rm

ed

Random 0.0250 0.0250 0.0250 0.0100 0.0050
BT*Katz 0.0100 0.0100 0.0075 0.0020 0.0030
DG*Comm 0.0100 0.0075 0.0050 0.0020 0.0030
DG*Dist 0.0100 0.0075 0.0050 0.0020 0.0030
DG*Katz 0.0100 0.0075 0.0050 0.0020 0.0030
PR*Comm 0.0100 0.0075 0.0050 0.0020 0.0030
PR*Dist 0.0100 0.0075 0.0050 0.0020 0.0030
PR*Katz 0.0100 0.0075 0.0050 0.0020 0.0030

choice for node selection strategy in Structack has a greater influ-

ence on the attack unnoticeability than the node linking strategy.

Performance trade-off. Structack provides competitive effective-

ness and high efficiency. However, it shows to be relatively no-

ticeable compared to baseline approaches. On the other hand,

optimization-based informed attacks achieve better unnoticeabil-

ity but with much lower efficiency compared to Structack. This

low efficiency prevents them from running on larger graphs, with

Pubmed as a toy example (this has been recently noted by Geisler

et al. [8]). A deeper look into Structack shows that the selection

strategy (i.e., centrality measure) has more impact on effectiveness

and unnoticeability. Conversely, the linking strategy (i.e., similarity

measure) has more impact on the efficiency.

All in all, we assume an attack to be effective (cause high misclas-

sification rate) if one of the 7 most effective combinations is picked.

When running on big graphs, attackers would tend to choose ef-

ficient combinations such as DG×Comm. To hide their behavior,

attackers would tend to choose less noticeable combinations such

as BT×Katz.

Limitations. Our study focuses on exploiting the structure infor-

mation using centrality and similarity measures. One could study

other centrality and similarity measures, and even other graph

structural properties. Moreover, instead of the theoretical strategy

defined in Section 4.2, one could define a more practical heuristic

to exploit these structural features. Furthermore, other forms of

degree normalization in the target GNN model could result in dif-

ferent strategies than Structack, which is an interesting direction

for future work. However, the aim of our work is to illustrate the

extent to which uninformed attacks are successful, and we demon-

strate that through our Structack strategy, which covers a range of

possibilities of uninformed attacks.

Our unnoticeability measure was limited to degree and cluster-

ing coefficient distributions. Different unnoticeability tests could

be investigated for this purpose. In this regard, Structack appears

more noticeable than existing informed attacks due to its greedi-

ness in selecting nodes with lowest centrality. The unnoticeability

results motivate us to look into approaches that intrinsically con-

sider both effectiveness and unnoticeability. More careful selection



could improve Structack’s unnoticeability, at the possible cost of

effectiveness.

Additionally, comparing distributions of the clean graph and the

perturbed one is not practical for dynamic networks, where edges

and nodes are added and removed constantly. This comparison

does not consider the natural growth of the network. This type of

comparison is a common practice in works on adversarial attacks on

graphs, and it should be improved. This could be alleviated by using

graph growth models or dedicated datasets with edge timestamps.

7 RELATED WORK

Information available to attackers. Many recent works have in-

troduced attack models for GNNs with different knowledge and

capabilities. These models adhere to various restrictions on the

practicality of the adversarial attacks and the limitations of the at-

tacker. However, the majority of these models assume the attacker’s

knowledge of the targeted GNN model [29, 30] or their access to

node attributes [16, 26, 33, 34], i.e., feature vectors and some labels.

We have referred to such adversarial attacks as informed attacks.

A recent survey [11] describes the level of knowledge of (i) the

targeted GNN model and (ii) graph data as one characteristic of the

attack. Our work differentiates between these two descriptions and

focuses on the knowledge of graph data regardless of the knowledge

of the targeted model.

Node centrality. Earlier findings in network science on control-

ling complex networks [15] show that fewer nodes are needed to

control the network, if one aims to control nodes with low degrees.

Another study about the stability of node embedding [23] shows

that high-centrality nodes have more stable embeddings compared

to low-centrality nodes. In the context of GNNs, Metattack[34]

shows a slight tendency to connect nodes with low degree. Zhu

et al. [32] experimentally consider attacks on nodes with higher

than 10 degrees for noticeability considerations. Ma et al. [16] in-

troduce practical adversarial attacks by targeting nodes with high

importance score, e.g., PageRank, node degree, and betweenness.

The authors argue that nodes with too high importance score, e.g.,

hubs, are hard to control, hence the attack approach avoids such

nodes. Our work conversely builds theoretical grounds and experi-

mental support to show that attacks are more effective if they focus

on low degree nodes.

Node similarity. A study on the behavior of GNNs [14] shows

that feature and label smoothness are the reason why GNNs work.

Some works on GNN adversarial attacks [11, 12] analyze the poi-

soned graphs of popular attack models and show a tendency of the

attackers to add edges between nodes with different labels and low-

similarity features. Waniek et al. [27] introduce an attack that is

explicitly based on disconnecting nodes with the same label and con-

necting nodes with different labels (Disconnect Internally, Connect

Externally - DICE). More insights on structure in Metattack [34]

suggest that attacks tend to link pairs of nodes with higher-than-

average shortest path length. Finally, a preprocessing-based defense

mechanism for GNNs [29] is based on reducing the weight of edges

between nodes with a low Jaccard similarity score of their fea-

tures. Our work builds on these findings to investigate more in

structural node similarity and build an uninformed structure-based

adversarial attack strategy.

8 CONCLUSION

We investigated the effectiveness of uninformed adversarial attacks

on GNNs, i.e. attacks that have no access to information about node

labels or feature vectors in a graph. With theoretical considera-

tions and experimental support, we demonstrated that uninformed

attacks can exploit structural features of the graph, such as node cen-

trality and similarity. We presented Structack, a novel uninformed

attack strategy that selects nodes with low centrality and links pairs

of nodes with low similarity. In experiments on five graph datasets

Structack showed comparable performance to state-of-the-art at-

tacks, while having less information about the graph (no access

to node attributes), exhibiting higher efficiency, and reasonable

unnoticeability. Our work shows that uninformed adversarial at-

tacks are successful with only structural knowledge, sometimes

outperforming informed attacks. The feasibility of Structack on

real-world graphs makes it vital to develop more structure-aware

defense mechanisms for more reliable GNN prediction.

ACKNOWLEDGEMENTS

The Know-Center is funded within the Austrian COMET Program

ś Competence Centers for Excellent Technologies ś under the aus-

pices of the Austrian Federal Ministry of Transport, Innovation

and Technology, the Austrian Federal Ministry of Economy, Family

and Youth and by the State of Styria. COMET is managed by the

Austrian Research Promotion Agency FFG. This work is supported

by the H2020 project TRUSTS (GA: 871481) and the łDDAIž COMET

Module within the COMET Program, funded by the Austrian Fed-

eral Ministry for Transport, Innovation and Technology (bmvit), the

Austrian Federal Ministry for Digital and Economic Affairs (bmdw),

the Austrian Research Promotion Agency (FFG), the province of

Styria (SFG) and partners from industry and academia.

REFERENCES
[1] Lada A. Adamic and Natalie Glance. 2005. The Political Blogosphere and the 2004

U.S. Election: Divided They Blog. In Proceedings of the 3rd International Workshop
on Link Discovery (Chicago, Illinois) (LinkKDD ’05). Association for Computing
Machinery, New York, NY, USA, 36ś43. https://doi.org/10.1145/1134271.1134277

[2] Sadegh Aliakbary, Jafar Habibi, and Ali Movaghar. 2014. Quantification and
comparison of degree distributions in complex networks. In 7’th International
Symposium on Telecommunications (IST’2014). 464ś469. https://doi.org/10.1109/
ISTEL.2014.7000748

[3] Sharmodeep Bhattacharyya and Peter J Bickel. 2014. Community detection in
networks using graph distance. arXiv preprint arXiv:1401.3915 (2014).

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[5] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163ś177.

[6] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371
(2018).

[7] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.
Social networks 1, 3 (1978), 215ś239.

[8] Simon Geisler, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann.
2021. Attacking Graph Neural Networks at Scale. In Deep Learning for Graphs at
AAAI Conference on Artificial Intelligence 2021, AAAI workshop 2021.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024ś1034.

[10] Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Roman Kern, and Denis Helic.
2020. On the Impact of Communities on Semi-supervised Classification Using



Graph Neural Networks. In International Conference on Complex Networks and
Their Applications. Springer, 15ś26.

[11] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. 2020. Adversarial
Attacks and Defenses on Graphs: A Review and Empirical Study. arXiv preprint
arXiv:2003.00653 (2020).

[12] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph Structure Learning for Robust Graph Neural Networks. Association
for Computing Machinery, New York, NY, USA, 66ś74. https://doi.org/10.1145/
3394486.3403049

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[14] Qimai Li, Zhichao Han, and Xiao Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In 32nd AAAI Conference
on Artificial Intelligence, AAAI 2018. arXiv:1801.07606

[15] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. 2011. Controlla-
bility of complex networks. nature 473, 7346 (2011), 167ś173.

[16] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Black-Box Adversarial At-
tacks on Graph Neural Networks with Limited Node Access. arXiv preprint
arXiv:2006.05057 (2020).

[17] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2019. Attacking
graph convolutional networks via rewiring. arXiv preprint arXiv:1906.03750
(2019).

[18] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3, 2 (2000), 127ś163.

[19] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.
Query-driven active surveying for collective classification. In 10th International
Workshop on Mining and Learning with Graphs, Vol. 8.

[20] Mark Newman. 2018. Networks. Oxford university press.
[21] Mark EJ Newman. 2008. The mathematics of networks. The new palgrave

encyclopedia of economics 2, 2008 (2008), 1ś12.
[22] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[23] Tobias Schumacher, Hinrikus Wolf, Martin Ritzert, Florian Lemmerich, Jan Bach-
mann, Florian Frantzen, Max Klabunde, Martin Grohe, and Markus Strohmaier.
2020. The Effects of Randomness on the Stability of Node Embeddings. arXiv
preprint arXiv:2005.10039 (2020).

[24] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93ś93.

[25] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[26] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierar-
chical Reinforcement Learning Approach. Association for Computing Machinery,
New York, NY, USA, 673ś683. https://doi.org/10.1145/3366423.3380149

[27] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan.
2018. Hiding individuals and communities in a social network. Nature Human
Behaviour 2, 2 (2018), 139ś147.

[28] Felix Wu, Tianyi Zhang, Amaur Holanda de Souza, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks.
Proceedings of Machine Learning Research (2019).

[29] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples for graph data: deep insights into attack and
defense. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 4816ś4823.

[30] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks: An
Optimization Perspective. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 3961ś3967. https://doi.org/10.24963/ijcai.
2019/550

[31] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In Advances in Neural Information Processing Systems. 5165ś5175.

[32] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1399ś1407.

[33] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2847ś2856.

[34] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In International Conference on Learning
Representations. https://openreview.net/forum?id=Bylnx209YX

A DETAILED EFFECTIVENESS RESULTS

Table shows the accuracy of GCN [13] for node classification on

the considered datasets after changing the structure using different

combinations of Structack with a perturbation rate 𝑟 = 0.05. These

are the detailed results of what Figure 3 summarizes.

Table 7: GCN accuracy on each dataset after applying Struc-

tack with each centrality×similarity combination. The low-

est accuracy (best combination) in each dataset is shown in

boldface.

Similarity Community Distance Katz Random
Dataset Centrality

Citeseer

Betweenness 72.06±0.9 72.04±1.0 71.83±1.0 72.22±1.0
Closeness 72.75±0.7 71.99±1.0 72.22±1.1 72.88±1.1
Degree 71.89±0.9 71.66±1.0 71.33±1.1 71.86±0.9
Eigenvector 72.44±1.1 72.55±0.8 72.46±1.3 73.05±0.8
Pagerank 71.67±1.0 71.38±1.0 71.67±1.0 72.18±0.7
Random 73.08±1.1 73.08±1.1 73.04±0.9 72.64±1.2

Cora

Betweenness 79.05±0.5 79.11±0.4 78.77±0.5 79.65±0.5
Closeness 79.99±0.4 79.99±0.6 79.57±0.5 80.33±0.4
Degree 78.51±0.6 78.80±0.5 78.98±0.5 79.63±0.5
Eigenvector 80.19±0.5 79.80±0.5 79.93±0.6 80.53±0.5
Pagerank 78.85±0.5 78.53±0.5 78.40±0.5 78.99±0.5
Random 80.35±0.5 80.44±0.5 80.31±0.5 80.56±0.5

Cora-ML

Betweenness 80.50±0.7 80.16±0.5 80.27±0.7 80.85±0.7
Closeness 81.42±0.7 81.32±0.7 81.58±0.6 82.14±0.6
Degree 80.12±0.6 80.15±0.5 80.17±0.6 80.51±0.7
Eigenvector 81.72±0.8 81.60±0.5 81.48±0.7 82.09±0.7
Pagerank 80.51±0.6 80.19±0.6 80.06±0.7 80.99±0.8
Random 82.23±0.7 82.00±0.6 82.10±0.6 82.24±0.6

Polblogs

Betweenness 75.19±0.9 77.88±3.0 76.41±1.8 83.17±2.5
Closeness 75.87±1.4 79.09±2.4 75.72±1.8 83.02±2.0
Degree 75.65±1.3 78.87±2.0 76.27±1.4 82.48±2.9
Eigenvector 76.52±0.9 77.69±2.1 76.62±1.7 82.41±2.7
Pagerank 75.25±1.4 78.09±2.2 75.99±1.6 82.73±2.6
Random 79.93±3.3 80.25±2.9 80.13±3.4 83.57±3.4

Pubmed

Betweenness 84.93±0.3 84.71±0.2 84.38±0.2 85.21±0.3
Closeness 85.42±0.3 85.38±0.2 85.24±0.3 85.58±0.3
Degree 84.79±0.3 84.55±0.3 84.34±0.3 85.08±0.4
Eigenvector 85.45±0.3 85.49±0.2 85.40±0.3 85.65±0.2
Pagerank 84.54±0.4 84.20±0.3 84.08±0.3 85.13±0.2
Random 85.83±0.3 85.74±0.3 85.64±0.3 85.90±0.3



B DETAILED EFFICIENCY RESULTS

We show the detailed runtime for Structack combinations in Table 8

and the memory consumption in Table 9. Runtime and memory

consumption results are obtained after setting random linking with

each selection method, and random selection with each linking

method. We chose random because its time and memory require-

ments are negligible for our comparison. For these experiments, we

also set the perturbation rate 𝑟 to 0.05.

Table 8: Runtime in seconds for each selection/linking

method.

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

Centrality

Betweenness 170.42 242.02 398.90 233.17 19,507.80
Closeness 36.95 54.19 91.24 66.79 3,938.98
Degree 0.18 0.42 0.46 0.96 2.82
Eigenvector 1.04 2.10 6.12 5.57 21.56
Pagerank 2.01 2.22 3.09 4.65 20.86

Similarity
Community 2.38 3.06 5.60 13.48 110.42
Distance 3.27 5.86 13.48 49.53 468.35
Katz 58.75 79.47 85.60 38.30 5,978.16

Table 9: Memory consumption in Megabytes for each selec-

tion/linking method.

Dataset Citeseer Cora Cora-ML Polblogs Pubmed

Centrality

Betweenness 367 366 363 364 438
Closeness 369 367 365 365 438
Degree 316 318 321 323 423
Eigenvector 357 354 353 361 437
Pagerank 349 349 354 367 500

Similarity
Community 368 367 370 387 1,055
Distance 387 382 400 409 2,150
Katz 549 609 659 432 1,3881

C DETAILED UNNOTICEABILITY RESULTS

We show the unnoticeability of different combinations of Structack

and with different perturbation rates 𝑟 ∈ {0.001, 0.002, 0.003, 0.004,

0.005, 0.0075, 0.01, 0.025,0.05, 0.075, 0.10, 0.15, 0.20}. These are the

detailed results of what Figure 6 summarizes.

Notice that the choice of similarity has no impact on 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . For

Citeseer, Cora and Cora-ML, closeness centrality and eigenvector

centrality are the least noticeable. For the other two datasets (Pol-

blogs and Pubmed), all centrality measures have the same 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

Table 10: Attack unnoticeability on each dataset after apply-

ing Structack with each centrality×similarity combination.

The centrality measure (excpet random) with the highest

critical perturbation rate 𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 in each dataset is shown

in boldface.

Similarity Community Distance Katz Random
Dataset Centrality

Citeseer

Betweenness 0.0100 0.0100 0.0100 0.0100
Closeness 0.0250 0.0250 0.0250 0.0250
Degree 0.0100 0.0100 0.0100 0.0100
Eigenvector 0.0250 0.0250 0.0250 0.0250
Pagerank 0.0100 0.0100 0.0100 0.0100
Random 0.0500 0.0500 0.0500 0.0500

Cora

Betweenness 0.0100 0.0100 0.0100 0.0100
Closeness 0.0250 0.0250 0.0250 0.0250
Degree 0.0075 0.0075 0.0075 0.0075
Eigenvector 0.0250 0.0250 0.0250 0.0250
Pagerank 0.0075 0.0075 0.0075 0.0075
Random 0.0250 0.0250 0.0250 0.0250

Cora-ML

Betweenness 0.0100 0.0100 0.0100 0.0100
Closeness 0.0100 0.0100 0.0100 0.0100
Degree 0.0050 0.0050 0.0050 0.0050
Eigenvector 0.0100 0.0100 0.0100 0.0100
Pagerank 0.0050 0.0050 0.0005 0.0050
Random 0.0250 0.0250 0.0250 0.0250

Polblogs

Betweenness 0.0020 0.0020 0.0020 0.0020
Closeness 0.0020 0.0020 0.0020 0.0020
Degree 0.0020 0.0020 0.0020 0.0020
Eigenvector 0.0020 0.0020 0.0020 0.0020
Pagerank 0.0020 0.0020 0.0020 0.0020
Random 0.0100 0.0100 0.0100 0.0100

Pubmed

Betweenness 0.0030 0.0030 0.0030 0.0030
Closeness 0.0030 0.0030 0.0030 0.0030
Degree 0.0030 0.0030 0.0030 0.0030
Eigenvector 0.0030 0.0030 0.0030 0.0030
Pagerank 0.0030 0.0030 0.0030 0.0030
Random 0.0050 0.0050 0.0050 0.0050
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