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Abstract. Graph Neural Networks (GNNs) are effective in many appli-
cations. Still, there is a limited understanding of the effect of common
graph structures on the learning process of GNNs. In this work, we sys-
tematically study the impact of community structure on the performance
of GNNs in semi-supervised node classification on graphs. Following an
ablation study on six datasets, we measure the performance of GNNs on
the original graphs, and the change in performance in the presence and
the absence of community structure. Our results suggest that communities
typically have a major impact on the learning process and classification
performance. For example, in cases where the majority of nodes from
one community share a single classification label, breaking up community
structure results in a significant performance drop. On the other hand,
for cases where labels show low correlation with communities, we find
that the graph structure is rather irrelevant to the learning process, and
a feature-only baseline becomes hard to beat. With our work, we provide
deeper insights in the abilities and limitations of GNNs, including a set
of general guidelines for model selection based on the graph structure.

Keywords: graph neural networks, community structure, semi-supervised
learning.

1 Introduction

Many real-world systems are modeled as complex networks, which are defined
as graphs with complex structural features that cannot be observed in random
graphs [12]. The existence of such features governs different processes and interac-
tions between nodes in the graph. In particular, community structures are often
found in empirical real-world complex networks. These structures have a major
impact on information propagation across graphs [1] as they provide barriers
for propagation [9]. The process of information propagation forms the basis for
many studied applications on graphs. Among these applications, graph-based
semi-supervised learning [13,27] is widely studied and particularly of interest.
Graph-based semi-supervised learning aims to exploit graph structure in order to
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learn with very few labeled examples [15]. In recent years, state-of-the-art methods
for this task have predominantly been graph neural networks (GNNs) [22].
Problem. Despite the outstanding results of GNNs on this and similar tasks,
there is still a limited understanding of their abilities and constraints, which
hinders further progress in the field [16,26]. To the best of our knowledge, there is
a lack of research on how common graph structures, such as communities, impact
the learning process of GNNs.
The present work. We are particularly interested in the influence of community
structure on the performance of GNNs in semi-supervised node classification.
From a practical perspective, we set out to provide a set of guidelines on the
applicability of GNNs based on the relationships between communities and target
labels. To that end, we design an evaluation strategy based on an ablation study
on multiple graph datasets with varying characteristics in order to study the
behaviour of GNNs. Using this evaluation strategy we compare the performance
of GNNs on six public graph datasets to a simple feature-based baseline (i.e.,
logistic regression) which ignores the graph structure.

To gain a deeper understanding on the role of communities, we compare the
change in performance of GNNs after (i) eliminating community structures while
keeping the degree distribution, (ii) keeping the community structure while using
a binomial degree distribution, and (iii) eliminating both. Finally, we link the
evaluation results on the ablation models to the relationship between commu-
nities and labels in each dataset. To achieve this, we compute the uncertainty
coefficient [19] of labels with respect to communities, before and after applying
community perturbations.
Findings. Our results show that GNNs are able to successfully exploit the graph
structure and outperform the feature-based baseline only when communities
correlate with the node labels, which is known in the literature as the cluster
assumption [4]. If this assumption fails, GNNs propagate noisy features across
the graph and are unable to outperform the feature-based baseline.
Contributions. With our work, we highlight the limitations that community
structures can impose on GNNs. We additionally show that the proposed un-
certainty coefficient measure helps predicting the applicability of GNNs on
semi-supervised learning. We argue that this measure can set a guideline to
decide whether to use GNNs on a certain semi-supervised learning task, given
the relationship between communities and labels.

2 Background

Graph neural networks. Let G = (V,E) be a graph with a set of nodes V and
a set of edges E. Let each node u ∈ V have a feature vector xu ∈ IRd, where d is
the feature vector dimension; and a label yu ∈ L, where L is the set of labels.

GNNs are multi-layer machine learning models, which operate on graphs.
They follow a message passing and aggregation scheme where nodes aggregate the
messages that are received from their neighbors and update their representation
on this basis. In a GNN with K hidden layers (with the input layer denoted as
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layer 0), each node u has a vector representation h(k)u at a certain layer k ≤ K
of dimension dk. The transformation from a layer k to the next layer k + 1 is
performed by updating the representation of each node u as follows:

a(k)u := AGGREGATEv∈N (u)(h
(k)
v ),

h(k+1)
u := COMBINE(h(k)u , a(k)u ),

(1)

where N (u) is the set of neighbors of u. The AGGREGATE function takes an
unordered set of vectors of dimension dk as an input, and returns a single vector of
the same dimension dk, e.g., element-wise mean or max. The COMBINE function
combines the representation of u in layer k with the aggregated representation of
its neighbors, e.g., a concatenation followed by ReLU of a linear transformation
COMBINE(h, a) = ReLU(W.[h, a]). We set the representation of u in the input
layer to the input features: h(0)u := xu. In classification problems, the dimension
of the last layer dK equals the number of labels in the graph |L|.
Semi-supervised learning on graphs. Semi-supervised learning aims to ex-
ploit unlabeled data in order to generate predictions given few labeled data. In
graphs, this means exploiting the unlabeled nodes as well as the network struc-
ture to improve the predictions. Many semi-supervised classification methods
on graphs assume that connected nodes are more likely to share their label [15],
which is usually referred to as the cluster assumption [4]. Based on this assump-
tion, approaches to solve this task usually aim to propagate node information
along the edges. Earlier related approaches [21,27] focused on propagating label
information from labeled nodes to their neighbors. In many applications, however,
graph nodes can also be associated with feature vectors, which can be utilized by
GNNs. GNNs achieved a significant improvement over the state of the art since
they can effectively harness the unlabeled data, i.e., graph structure and node
features.
Cluster assumption. GNNs operate by propagating node feature vectors along
the edges, hence exploiting both the graph structure and feature vectors. The
GNN update rule in Equation 1 can be seen as a form of (Laplacian) feature
smoothing [15] as it combines the feature vector of a node with the feature vectors
of its neighbors. Feature smoothing results in neighboring nodes having similar
vector representations. Therefore, with the cluster assumption in mind, feature
smoothing potentially causes nodes with similar labels to also obtain similar
vector representations. However, when the cluster assumption does not hold, i.e.,
connected nodes are less likely to share their label, the propagation in Equation 1
can cause nodes with different labels to have similar vector representations. It
is widely accepted that classifiers achieve better accuracy when similar vector
representations tend to have similar labels.
Communities and the cluster assumption. Communities are densely con-
nected subgraphs, and they are common in empirical graphs including social,
citation or web graphs. The existence of communities directly affects information
propagation in graphs [5]. As communities are densely connected, the feature
smoothing performed by the update rule in Equation 1 tends to make nodes
within the same community have similar vector representations. This dense con-
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nectivity also causes the cluster assumption to generalize to the community level,
which means that nodes within the same community tend to share the same
label. As a result, when the cluster assumption holds, GNNs cause nodes with
the same label to have similar vector representations simplifying the classification
task on the resulting vector representations. Li et al. [15] hypothesize that this
alignment of communities and node labels may be the main reason why GNNs
achieve state-of-the-art performance on the classification task. In this paper we
aim to experimentally test this hypothesis on six datasets from different domains.

In the other case, which is typically ignored in literature, the cluster assump-
tion does not hold, and a community could possibly have a variety of labels. The
feature propagation between nodes of the same community would therefore result
in feature smoothing for nodes with different labels. This eventually makes the
classification task harder since representation similarity does not imply label
similarity in this case.

In summary, in this paper we set out to quantify the label-community cor-
relation and how this correlation is related to the performance of GNNs on
semi-supervised classification task on graphs.

3 Methods and Experiments

We start by quantifying how much information node’s community reveals about
its label. For a labeled graph, let L be a random variable taking values in the set
of labels L, i.e., L(u) is the label of node u ∈ V . Assuming the graph is partitioned
into a set of disjoint communities C, we define another random variable C taking
values in C, i.e., C(u) is the community of node u ∈ V .

To measure how much the (fraction of) uncertainty about L is reduced
knowing C, we use the uncertainty coefficient [19] of L given C. This coefficient
can be written as U(L|C) = I(L;C)

H(L) ∈ [0, 1], where H(L) is the entropy of L, and
I(L;C) is the mutual information between L and C.

When the uncertainty coefficient equals 1, all nodes within each community
share the same label, and thus knowing the node’s community means also that we
know the node’s label. On the other hand, when the uncertainty coefficient is 0,
the label distribution is identical in all communities, so knowing the community
of a node does not contribute to knowing its label. In general, the higher the
eliminated uncertainty about the labels when knowing communities is (i.e., the
closer U(L|C) is to 1), the more likely it is that the cluster assumption holds,
and thus GNNs can exploit the graph structure, and vice versa.

3.1 Ablation study

After establishing the intuitions behind the role of communities, we aim to show
their impact experimentally. To achieve this, we evaluate five popular state-of-
the-art GNN models on six empirical datasets. Subsequently, we re-evaluate these
GNN models on the same datasets after applying ablation to their structures.
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In particular, we evaluate the accuracy of GNNs on the original datasets and
compare this performance to the ones on the following ablation models:

• SBM networks. Here we aim to rebuild the graph while preserving the
communities. Thus, we firstly perform community detection with widely
used Louvain method [2], which maximizes the modularity score. Secondly,
we build a stochastic block matrix encoding the original density of edges
within and between the detected communities. Finally, we use this matrix to
construct a graph with the stochastic block model (SBM) [10]. This graph
preserves a node’s community, features and label but results in a binomial
degree distribution [11].

• CM networks. In this ablation model, we apply graph rewiring using the
so called configuration model (CM) [18]. With this rewiring, each node keeps
its degree, but its neighbors can become any of the nodes in the graph. This
effectively destroys the community structure, while keeping the node’s degree,
features and label.

• Random networks. We use Erdős-Rényi graphs [7] to eliminate both com-
munities and degree distribution. The resulting graph has no community
structure and features a binomial degree distribution. This ablation model
can only spread noisy feature information across the graph.

Last but not least, for each of the original datasets and each of the ablation
models we compute the community-label correlation by means of the uncertainty
coefficient. To that end, we use the joint distribution of labels L and communities
C (extracted by the Louvain method) to compute this coefficient for each graph.
In order to highlight the correlation between this coefficient and the applicability
of GNNs, we show the computed coefficients on the given datasets along with
their performance.

3.2 Experiments

In our experiments 3, we study five GNN architectures which are widely used
for semi-supervised classification on graphs: (a) Graph Convolutional Networks
(GCN) [13], (b) Graph Sample and Aggregate (SAGE) [8], (c) Graph Attention
Networks (GAT) [24], (d) Simple Graph Convolutions (SGC) [25], and (e) Ap-
proximate Personalized Propagation of Neural Predictions (APPNP) [14]. We
additionally compare these approaches to a simple feature-only baseline, i.e.,
logistic regression model, which ignores the graph structure and only uses the
node features. The comparison to this baseline can indicate whether a GNN
model is actually useful for the task on the respective datasets.
Datasets. To provide a better understanding of the roles of the studied structures,
we aim for a diverse selection of datasets with respect to (a) domain, e.g., citation,
social and web graphs, (b) structure, e.g., directed acyclic vs. cyclic, (c) and
correlations between communities and labels, i.e., whether nodes of the same
3 The implementation and technical details can be found on https://github.com/
sqrhussain/structure-in-gnn

https://github.com/sqrhussain/structure-in-gnn
https://github.com/sqrhussain/structure-in-gnn
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community tend to share the same label. Having this in mind, we use the datasets
summarized in Table 1.

The label of a node in a citation graph (i.e., CORA-ML, CiteSeer, PubMed
and CORA-Full) represents the topic of the paper. Citations are expected to be
denser among papers with similar topics than they would be between papers of
different topics. For example, a publication about natural language processing
would be more likely to cite other natural language processing papers than
human-computer interaction papers. Therefore, one could intuitively expect that
papers within the same graph community tend to share the same label.

Twitter graph consists of users where the edges represent retweets, and node
labels indicate whether a user is hateful or not. Therefore, one could not easily
assume the presence or the absence of a correlation between communities and
labels (hateful or normal). In other words, we do not know whether hateful users
typically form communities as this highly depends on the discussion topics.

For WebKB dataset, nodes are web pages, edges are links, and labels indicate
the type of the web page, i.e., course, faculty, project, staff or student. In this
case one cannot intuitively assume that nodes within a graph community are
expected to share a label. For example, a web page of a staff member could be
more likely to link to projects on which this staff member is working than to
other staff members’ web pages. Based on these intuitions, we consider that these
graphs are sufficiently diverse concerning community impact on label prediction.
Evaluation setup. While the original graphs are directed, we treat them as
undirected by ignoring the edge direction (which is in the line with previous
research [8,13,22]). All of these graphs are preprocessed in a similar manner as
Shchur et al. [22], i.e., removing nodes with rare labels and selecting the largest
weakly connected component except in WebKB where we take four connected
components representing 4 universities. Following the train/validation/test split
strategy as in [22], each random split consists of 50 labeled examples per class
(20 for training and 30 for validation) and the rest are considered test examples.
This applies to all of our datasets except WebKB where we use 10 training
examples and 15 validation examples per class due to the fewer number of nodes.
To evaluate the GNN models on the original graphs, we follow the evaluation

Table 1. Dataset statistics after preprocessing (similar to Shchur et al. [22]). The label
rate represents the fraction of nodes in the training set. The edge density is the number
of existing undirected edges divided by the maximum possible number of undirected
edges (ignoring self-loops). For Twitter dataset, we apply cleaning to the feature vectors
of nodes same as in [23], i.e., removing graph-based and some textual features.

Dataset Labels Features Nodes Edges Edge density Label rate

CORA-ML [21] 7 1,433 2,485 5,209 0.0017 0.0563
CiteSeer [21] 6 3,703 2,110 3,705 0.0017 0.0569
PubMed [17] 3 500 19,717 44,335 0.0002 0.0030
CORA-Full [3] 67 8,710 18,703 64,259 0.0004 0.0716
Twitter [20] 2 215 2,134 7,040 0.0031 0.0187
WebKB [6] 5 1,703 859 1,516 0.0041 0.0582
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setup as conducted in [22] by having 100 random splits and 20 random model
initializations for each split. The same process is carried out to evaluate the
feature-only baseline (logistic regression) model. The evaluation is slightly different
for the ablation studies (SBM, CM and random graphs) since they include an
additional level of randomization. For a given dataset, we generate SBM, CM and
random graphs with 10 different random seeds, which results in 10 SBM graphs,
10 CM graphs and 10 random graphs. The evaluation on each of these generated
graphs is carried out through 50 different random splits and 10 different random
initializations. As a result, the reported accuracy for a GNN architecture on
the original graph is presented for 2, 000 trainings of the GNN. Meanwhile, the
reported accuracy of a GNN architecture on one of the ablation models (SBM,
CM or random graphs) is presented for training the GNN 5, 000 times, i.e., 10
randomly generated graphs × 50 random splits × 10 random initializations.
Uncertainty coefficient calculation. To calculate U(L|C) for a set of nodes,
the labels of these nodes must be available. Therefore, for each dataset, we
compute U(L|C) using the labeled nodes from the training and validation sets.

3.3 Results

We summarize the evaluation results of the GNN models with respect to accuracy
for the original graph and its corresponding ablation models in Figure 1.
Could GNNs outperform the simple baseline? Comparing the performance
of GNNs on the original graphs with the feature-only baseline, all GNN models
clearly outperform the baseline on the citation datasets. For the Twitter dataset
however, GAT could not outperform the baseline, while GCN and GraphSAGE
outperformed it only by a small margin. This is more prominent for WebKB
where none of the GNNs outperforms the baseline on the original graph. This
suggests that for the two latter datasets, the graph structure is either irrelevant to
the learning process or is even hindering it. To test the statistical significance for
each approach on each dataset against the corresponding baseline, we compute
the non-parametric Mann-Whitney U test for unpaired data with the significance
level α = 0.01 (Bonferroni corrected). The significance test shows that the
performance of GNNs on the original graphs is significantly different than the
performance of the feature-only baseline, i.e., GNNs significantly outperform
the baseline on all datasets except on WebKB where the baseline significantly
outperforms the GNNs. Mapping our results back to the cluster assumption and
the uncertainty coefficient, we notice that when U(L|C) is high, i.e., for CORA-
ML (.691), CiteSeer (.647) and PubMed (.673), GNNs are able to consistently
outperform the baseline. Meanwhile, when U(L|C) is low, i.e., for WebKB (.320),
GNNs are not useful for the task.
Ablation results. On citation datasets, the accuracy drop on the SBM graphs
is smaller than for the other two ablation models (CM and random graphs).
As SBM graphs preserve the community structure, this observation shows a
noticeable impact of communities on node classification in citation datasets.
However, this behavior is not always demonstrated on the Twitter dataset. On
contrary, on the Twitter dataset, we observe an overlap in the performances on
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Fig. 1. The accuracy of GNNs on the original graph and the ablation models of each
dataset. The red dashed line represents the median accuracy of the feature-only baseline.
The performance on the original graphs is generally higher than that of the baseline
except for WebKB. On citation graphs, the baseline is clearly outperformed on the
original graphs, and eliminating communities (CM graphs) results in a much higher
accuracy drop than eliminating the degree sequence (SBM graphs). This is not the
case for the other two datasets where the baseline is not always outperformed on the
original graphs, and the drop in performance on SBM networks is substantial. This
highlights the positive impact of communities on citation datasets and its negative
impact on WebKB. The uncertainty coefficient is the highest for the three datasets in
the top row and the lowest for WebKB providing a potential explanation for the low
GNN performance on this dataset.

the original graph and the ablation models. This performance overlap is even
more prominent on WebKB. The SBM graphs generally gain the lowest accuracy
on the WebKB dataset, showing a negative effect of preserving communities in
this dataset. These observations can again indicate that communities are boosting
the prediction for the citation datasets (where U(L|C) is high) while hindering it
for the WebKB dataset (where U(L|C) is low).

3.4 Discussion

In our experiments, we observe that the uncertainty coefficient is high for the
citation datasets, relatively low for Twitter, and much lower for WebKB. This
correlates with the classification performance on citation datasets that show (a) a
consistent performance on the original graphs and (b) a better accuracy on SBM
graphs comparing to the other ablations. On contrary, in the Twitter dataset,
where GNNs only outperform the baseline by a small margin, the behavior is
reflected in the coefficient value that is smaller than in three out of four citation
datasets. For WebKB, the coefficient is particularly low following the observations
that GNNs are unable to beat the simple baseline on the original network.

Our observation suggest that the uncertainty coefficient can indicate whether
GNNs are applicable depending on the relationship between the communities and
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Fig. 2. The figure in the top row shows the calculated U(L|C) for each dataset. The
swap fraction represents the fraction of nodes which changed their community. We see
a decline in the coefficient with increasing swapping fraction, and then a convergence.
This line is already converging in WebKB as the measure is already low in the original
network. The figure in the bottom shows the test accuracy with changing U(L|C). We
see a positive correlation between the uncertainty coefficient and the accuracy, which is
weak for Twitter, and non-existent for WebKB supporting our observations from above.

labels. To shed more light on the correlation between the uncertainty coefficient
and the classification performance of GNNs, we now study the change of both
GNN accuracy and the measured uncertainty coefficient on the given datasets
after applying additional community perturbations. Particularly, we start with the
SBM networks for each dataset and we perform the following perturbations. We
randomly select a fraction of nodes and assign them to different communities by
simply swapping the nodes position in the network. Then we gradually increase the
fraction of the selected nodes to obtain a spectrum of the uncertainty coefficient.
Finally, we compute U(L|C) and the accuracy of the GCN model on each of the
obtained graphs and show the correlation between the two measures. We choose
the SBM networks for this experiment to guarantee that the node swapping only
changes nodes’ communities and not their importance. We expect that these
perturbations increasingly reduce U(L|C) when the cluster assumption holds.

We show that U(L|C) decreases and then converges for the first 5 datasets
datasets (cf. Figure 2 [top]), supporting that the community perturbations
decrease the correlation between communities and labels. In these cases, the
GNN accuracy has a positive correlation with U(L|C) (cf. Figure 2 [bottom]).
However, when community perturbations do not reduce the correlation between
communities and labels, U(L|C) is already at a convergence level. That is the
case where GNNs were not able to outperform the feature-based baseline, i.e.,
WebKB. By reading the bottom row of Figure 2, we see that when U(L|C) is
below 0.3, the accuracy becomes unacceptably low. On the contrary, if U(L|C)
is above 0.7, the accuracy is high enough for the respective dataset.

Guideline for application of GNNs. To verify whether a GNN model is
applicable on a certain real-world dataset, we suggest the following two-step
guideline based on the previous observations.
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• The first step is to perform community detection on the dataset, and inspect
the uncertainty coefficient for it. If the coefficient is particularly low, e.g.,
below 0.3, there is a high confidence that GNNs will not work. If the coefficient
is particularly high, e.g., above 0.7, it is likely that GNNs can exploit the
network structure and be helpful for the prediction task. Otherwise, if the
value is inconclusive, e.g., around 0.5, we advise to perform the second step.
• The second step involves gradual community perturbations and inspection of

the respective uncertainty coefficient. If the value of the coefficient decreases
with more perturbations, this supports that the cluster assumption holds
in the original graph, and GNNs are applicable. Otherwise, if it does not
decrease, the cluster assumption most likely does not hold in the first place,
and feature-based methods are more advisable than GNNs.

4 Conclusion

In this work, we analyzed the impact of community structures in graphs on
the performance of GNNs in semi-supervised node classification, with the goal
of uncovering limitations imposed by such structures. By conducting ablation
studies on the given graphs, we showed that GNNs outperform a given baseline
on this task in case the cluster assumption holds. Otherwise, GNNs cannot
effectively exploit the graph structure for label prediction. Additionally, we show
an analysis on the relation between labels and graph communities. With our
analysis, we suggest that when community information does not contribute to
label prediction, it is not advisable to use such GNNs. In particular, we show that
the uncertainty coefficient of node labels knowing their communities can indicate
whether the cluster assumption holds. We further formalize a guideline to select
where to apply GNNs based on community-label correlation. Our work serves as
a contributing factor to intrinsic validation of the applicability of GNN models.
Future work can also investigate the effect of other graph structural properties
such as edge directionality, degree distribution and graph assortativity on the
GNN performance.
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