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Abstract
Graph Neural Networks (GNNs) are effective in many applications. Still, there is a
limited understanding of the effect of common graph structures on the learning
process of GNNs. To fill this gap, we study the impact of community structure and
homophily on the performance of GNNs in semi-supervised node classification on
graphs. Our methodology consists of systematically manipulating the structure of
eight datasets, and measuring the performance of GNNs on the original graphs and
the change in performance in the presence and the absence of community structure
and/or homophily. Our results show the major impact of both homophily and
communities on the classification accuracy of GNNs, and provide insights on their
interplay. In particular, by analyzing community structure and its correlation with
node labels, we are able to make informed predictions on the suitability of GNNs
for classification on a given graph. Using an information-theoretic metric for
community-label correlation, we devise a guideline for model selection based on
graph structure. With our work, we provide insights on the abilities of GNNs and
the impact of common network phenomena on their performance. Our work
improves model selection for node classification in semi-supervised settings.

Keywords: graph neural networks; community structure; homophily;
semi-supervised learning

1 Introduction
Graphs are ubiquitous forms of data, which are encountered in many domains such
as social networks, the web, citation networks, molecule interaction networks, and
knowledge bases. For many years, machine learning on graphs has been an essential
area in research. The developments in this area have resulted in solving or elevating
the state of the art of many graph-related tasks, such as node classification [1],
link prediction [2], and graph classification [3]. One central task in this context
is semi-supervised node classification, which consists of predicting unknown node
labels from node features and a few known node labels. The state-of-the-art models
for solving this task have predominantly been graph neural networks (GNNs) [4].
However, recent works have shown that GNNs are typically limited to work only
on homophilic graphs [5], i.e., where adjacent nodes are more likely to share the
same label and have similar features. Homophily, which is a common phenomenon in
many real-world graphs [6], yields the rise of community structure in these graphs [7].
Communities have an impact on information propagation in graphs. For example,
community structure can form barriers for information propagation in graphs, which
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forms the basis of processing with GNNs [8]. However, neither community structure
nor its relationship with homophily is well-studied in the context of GNNs.
Objective. We aim to extend our previous investigations [9], in which we studied
the impact of communities on GNNs. In the present paper, we go beyond community
structure to study the impact of homophily, which plays a major role in forming
communities in real-world graphs. Hence, we study the relationship between ho-
mophily and community structure, and their impact on the performance of GNNs
in semi-supervised node classification.
Approach. We design an evaluation methodology to study the impact of communi-
ties and homophily[1]. Our methodology is based on manipulating a diverse set of
real-world graph datasets. We start by defining contributing factors to GNN perfor-
mance: homophily and community mixing. We quantify these factors (Section 3.1)
using measures on structure and node properties. We apply data manipulation (in
Section 3.2) to modify homophily and/or community structure in the graph datasets.
To understand the impact of communities and homophily on GNNs, we study the
change in classification accuracy of trained GNNs on the original and manipulated
graphs.
Based on our observations, we derive a measure to quantify the correlation between

communities and node labels, using the uncertainty coefficient [10]. We use this
measure to predict whether GNNs are suitable for semi-supervised node classification
on a given graph dataset.
Findings. Our results show that homophily is the main contributing factor to the
high accuracy of GNNs. Moreover, when community structure exists, it contributes
to the performance of GNNs as it accelerates propagation between nodes of the
same label when homophily exists. Furthermore, our results also suggest that small
community structures (or sub-communities) act as barriers for propagation among
nodes of the same class, and limit the GNN performance when homophily exists.
Contributions. Our contributions are two-fold: (i) We provide an extensive study
on the interplay between community structure and homophily and their impact on
classification with GNNs, and (ii) we propose to quantify the correlation between
communities and labels using the uncertainty coefficient [10], and show that this
measure predicts the suitability of GNNs for graph data.
Our paper explains why GNNs do not work for heterophilic datasets and offers a

guideline on the applicability of GNNs based on graph structure and node properties
in the target graph. With our work highlighting the limitations of GNNs from the
point of view of data (that is, homophily and communities), we hope to set the
grounds for improved GNN models that account for the properties of the given data.

2 Communities and Homophily in GNNs
2.1 Preliminaries
Notations. Let G = (V,E) be a graph with a set of nodes V and a set of edges E.
Let each node u ∈ V have a feature vector xu ∈ IRd, where d is the feature vector
dimension; and a label yu ∈ L, where L is the set of labels.
Graph neural networks. GNNs are multi-layer machine learning models, that
operate on graphs. They follow a message passing and aggregation scheme where
[1]Our code is on https://github.com/sqrhussain/structure-in-gnn.
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Hussain et al. Page 3 of 24

nodes aggregate the messages that are received from their neighbors and update
their representation on this basis. In a GNN with K hidden layers (with the input
layer denoted as layer 0), each node u has a vector representation h(k)

u at a certain
layer k ≤ K of dimension dk. The transformation from a layer k to the next layer
k + 1 (as defined in [11]) is performed by updating the representation of each node
u as follows:

a(k)
u := AGGREGATEv∈N (u)(h

(k)
v ),

h(k+1)
u := COMBINE(h(k)

u , a(k)
u ),

(1)

where N (u) is the set of neighbors of u. The AGGREGATE function takes an
unordered set of vectors, each of dimension dk, as an input and returns a single vector
of the same dimension dk, e.g., element-wise mean or max. The COMBINE function
combines the representation of u in layer k with the aggregated representation of
its neighbors, e.g., a concatenation followed by ReLU of a linear transformation
COMBINE(h, a) = ReLU(W.[h, a]). We set the representation of u in the input layer
to the input features: h(0)

u := xu. In classification problems, the dimension of the
last layer dK equals the number of labels in the graph |L|.
Semi-supervised learning on graphs. Semi-supervised learning aims to exploit
unlabeled data in order to generate predictions given few labeled examples. In node
classification, where the ground-truth classes of few nodes are given, semi-supervised
learning exploits the unlabeled nodes as well as the network structure to obtain
accurate predictions. Many semi-supervised classification methods on graphs assume
that connected nodes are more likely to share their label and features [12, 5], which
is referred to as homophily. Based on this assumption, approaches to solving this
task usually aim to propagate node information along the edges. Earlier related
approaches [13, 14] focused on propagating label information from labeled nodes
to their neighbors. In many applications, however, graph nodes are associated with
feature vectors, which GNNs utilize. GNNs achieved a significant improvement over
the state of the art since they can effectively harness the unlabeled data, i.e., graph
structure and node features.
Homophily. Homophily in graphs with labeled nodes is the tendency of adjacent
nodes to have the same label. The opposite case, heterophily, is the tendency of
adjacent nodes to have different labels. We use the terms homophilic graphs and
heterophilic graphs to describe graphs, respectively, where the homophily holds and
where heterophily holds.

2.2 Mutual interplay
Homophily and GNNs. The GNN update rule in Equation 1 is seen as a form
of (Laplacian) feature smoothing [12] as it combines the feature vector of a node
with the feature vectors of its neighbors. Feature smoothing results in neighboring
nodes having similar vector representations. Therefore, for a homophilic graph,
feature smoothing potentially results in node vector representation that matches the
node labels. However, for a heterophilic graph, the propagation in Equation 1 can
cause nodes to have similar vector representations even if their labels are different.
It is widely accepted that classifiers achieve better accuracy when similar vector
representations tend to have the same labels.
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Cluster assumption. Communities are densely connected subgraphs, and they
are common in empirical graphs including social, citation, or web graphs. The
existence of communities directly affects information propagation in graphs [15, 8].
As communities are densely connected, the feature smoothing performed by the
update rule in Equation 1 tends to make nodes within the same community have
similar vector representations. The dense intra-community connectivity also causes
the homophily to generalize to the community level, which means that nodes within
the same community tend to share the same label. This is usually referred to as the
cluster assumption [16] in semi-supervised learning. As a result, for a homophilic
graph, GNNs cause nodes with the same label to have similar vector representations
simplifying the classification task on the resulting vector representations. Li et al. [12]
hypothesize that this alignment of communities and node labels is the main reason
why GNNs elevate state-of-the-art performance on the classification task. In this
paper, we aim to experimentally test this hypothesis on eight datasets from different
domains and with varying characteristics.
In the heterophilic case, which is often overlooked in the literature, a community

has a variety of labels. The feature propagation between nodes of the same community
would therefore result in feature smoothing for nodes with different labels. This
eventually makes the classification task harder since representation similarity does
not imply label similarity in this case.
In summary, theory and literature show that homophily, as well as community

structure, have a direct impact on learning with GNNs. In this paper, we set out to
study the impact of these factors[2] and the relationships between them.

3 Methods
With the discussion above, we showed two main factors in the graph data that
contribute to the performance of GNNs. In our study, we aim to investigate these
factors and their impact on classification with GNNs. Our methodology is based on
manipulating these factors in the graph structure and observing the GNN response
to this manipulation.
We first show how we quantify these factors, and we subsequently describe how

we manipulate graph data.

3.1 Contributing factors
Homophily. We measure the homophily in a labeled graph as the fraction of edges
that link nodes of the same label together. It is computed as follows

h =
|{(u, v) ∈ E : yu = yv}|

|E|
. (2)

Community structure. To quantify this factor, we first perform community
detection using the widely-used Louvain method [17][3] for community detection.
[2]Other factors in the graph have an impact on learning with GNNs. In our work,
we build the motivation for homophily and community structure, and leave the
investigation of other factors for future work.
[3]In our experiments, we stick to Louvain method for community detection as it is a
widely used method. There is no algorithmic reason why we choose this method over
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Then we compute the community mixing parameter on the resulting partition.
Community detection partitions the graph into a set of disjoint communities C. The
mixing parameter of a community partition is defined as the fraction of edges that
connect nodes from different communities

µ =
|{(u, v) ∈ E : C(u) 6= C(v)}|

|E|
, (3)

where C(u) ∈ C is the community of node u ∈ V . For a typical community partition,
the lower this measure is, the more pronounced the community structure is. For
example, µ = 0 indicates that each community corresponds to one or more connected
components. If the value of µ is greater than 0.5, the majority of links are inter-
community links, which is unrealistic for a modular community partition of a
real-world network.
By looking at Equations 2 and 3, we can notice that mixing resembles the het-

erophily of community memberships. In other words, if community memberships
were completely analogous to node labels, then h+ µ = 1.

3.2 Structure manipulation
After establishing the intuitions behind the role of communities and homophily,
we aim to show their impact experimentally. To achieve this, we evaluate five
popular state-of-the-art GNN models on eight empirical datasets. Subsequently,
we re-evaluate these GNN models on the same datasets after manipulating their
structures. In particular, we perform the following types of manipulation where we
intend to increase/decrease the homophily/mixing of the original graphs.
Increasing homophily (Hom+). To increase the homophily in a given graph, we
build a new graph given nodes labels in the original graph. In this newly built graph,
nodes of the same label are likely to link together regardless of their features or
position in the original graph. To achieve this, we build a graph using a stochastic
block model (SBM) [18], where blocks correspond to labels. In the stochastic block
matrix, we set the values in the diagonal to be (relatively) higher than other values
in the matrix (we provide details on building this matrix in Appendix A). This
implies a high edge density among nodes with the same label and low edge density
among nodes of different labels, i.e., high homophily. The resulting graphs also have
a defined community structure (stemming from the high density within labels), but
it does not necessarily match the original community structure. Since homophily
is intentionally high in the resulting graph, we expect GNNs to have very high
accuracy on Hom+ graphs.
Decreasing homophily (Hom−). To decrease the homophily in a given graph,
we perform random edge rewiring. We achieve this with the configuration model
(CM) [19], where we rewire the graph using all nodes together. Since the rewiring is
completely random, we expect the resulting graph to be completely useless for GNN
classification. In addition to decreasing homophily, this manipulation also affects
the community structure, causing a major increase in the mixing parameter. This
graph preserves the degree sequence of the original graph.

another method except for the brevity of the work. Investigating other community
detection methods is an interesting direction for future work.
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Increasing mixing (Mix+). In this manipulation, we intend to loosen the com-
munity structure –eventually increasing the mixing parameter– without significantly
changing homophily. To achieve this, we first partition the nodes based on their labels
into disjoint sets. We take each induced subgraph from each of the resulting sets,
and we rewire its edges randomly using the configuration model (CM) [19]. With
this process, we perform rewiring within labels, preserving homophily and destroying
sub-communities formed among nodes with the same label in the original graph. As
a result, the propagation becomes faster between nodes of the same label, and hence
we expect the impact of high homophily to be stronger on GNNs. For example, if the
original graph is homophilic, this manipulation will help nodes of the same label to
gain similar representations, and hence a better GNN performance. Since obtaining
better performance by destroying some communities sounds counter-intuitive, we
look more into that later in Section 5.4.

Decreasing mixing (Mix−). In this manipulation, we intend to tighten the existing
community structure, eventually decreasing the mixing parameter. We perform graph
reconstruction based on communities and regardless of each node’s label or feature
vector. To achieve this (more details in Appendix B), we use SBM [18] where blocks
refer to communities in the original graph. As a first step, we perform community
detection on the original graph using Louvain method [17], which partitions the
graph into sets of disjoint communities C = {c1, c2, ..., c|C|}. Second, we build a
stochastic block matrix where each element i, j represents the edge density between
nodes from ci and cj in the original graph. We artificially increase the density of
each community by increasing the values in elements i, i by 50%, and decreasing
the elements i, j : i 6= j by 50%. Finally, we build a graph from this matrix using
the stochastic block model. The resulting graph should strengthen (or tighten) the
existing community structure in the original graph but should result in a binomial
degree distribution [20]. These graphs should not significantly change the level of
homophily in the original graph, i.e., we should obtain a "homophilic" graph if the
original is "homophilic", and vice versa. We expect the GNN performance on these
graphs to be close to their performance on the original ones (regardless of whether
the original are homophilic or not).

Lastly, we summarize the effect of each type of manipulation on data in Table 1.
It is not possible to manipulate individual properties in the graph without affecting
other properties. In our study, we try to monitor the change of these properties to
guarantee the effect is minimal.

Table 1 Summary of the data manipulation and the desired effect on the graph data.
(∗) Mix− should result in a "homophilic" graph if the original was "homophilic", and vice
versa.

Manipulation Homophily Mixing Side-effects

Hom+ Increased Preserved Binomial degree distribution
Hom− Decreased Increased Destroys community structure
Mix− Preserved(∗) Decreased Binomial degree distribution
Mix+ Preserved Increased Destroys sub-communities
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4 Evaluation
4.1 Datasets.
To provide a better understanding of the roles of the studied factors, we aim for
a diverse selection of datasets concerning homophily. Having this in mind, we use
the datasets summarized in Table 2, divided into homophilic and non-homophilic
datasets. The nodes in these datasets represent bodies of text, such as web pages,
Wikipedia pages, and scientific papers. Since GNNs depend on feature propagation
(as shown in Equation 1), we restrict our experiments to graphs with node feature
vectors. The feature vectors in all studied datasets are binary vectors indicating the
presence/absence of a word in the respective node. We do not assume any change
in the graph structure (e.g., adding/removing edges/nodes) between the training
phase and the testing phase.
Homophilic datasets. As graphs with high homophily, we use four well known
citation datasets: CORA-ML, CiteSeer, PubMed and CORA-Full. The label of a
node in a citation graph represents the topic of the paper. Citations are expected
to be denser among papers with similar topics than they would be between papers
of different topics. For example, a publication about natural language processing
more likely cites other natural language processing papers than human-computer
interaction papers. Therefore, one could intuitively expect that adjacent papers tend
to share the same label.
Non-homophilic datasets. For low homophily, we use a topic graph from
Wikipedia (Squirrel), a Wikipedia co-occurrence network (Actor), and web pages
graphs (Texas and Wisconsin).
The Squirrel [22] graph is a Wikipedia topic subgraph, where nodes represent pages,

and edges represent links between pages. The five classes in this graph are based on
average monthly traffic, a property that does not particularly imply homophily.
The Actor [22] dataset (induced from [23]) is a co-occurrence graph. Nodes

correspond to actors, while edges correspond to their co-occurrence in Wikipedia
pages. The nodes are assigned to five categories in terms of words of the actor’s
Wikipedia. The classes, therefore, do not imply homophily.

Texas and Wisconsin graphs are two components from the WebKB [24] graph
dataset. In these graphs nodes are web pages, edges are links, and labels indicate
the type of the web page, i.e., course, faculty, project, staff, or student. In this case,
one cannot intuitively assume that nodes within a graph community are expected
to share a label. For example, a web page of a staff member more likely links to
projects on which this staff member is working than to other staff members’ web
pages.

Table 2 Dataset statistics after preprocessing (similar to Shchur et al. [21]).

Dataset Labels Features Nodes Edges Homophily Mixing

Homophilic

CORA-ML 7 1,433 2,485 5,209 0.81 0.09
CiteSeer 6 3,703 2,110 3,705 0.74 0.06
PubMed 3 500 19,717 44,335 0.80 0.09
CORA-Full 67 8,710 18,703 64,259 0.57 0.10

Non-homophilic

Squirrel 5 2,089 5,201 216,933 0.22 0.22
Actor 5 932 7,600 29,926 0.22 0.21
Texas 4 1,703 182 307 0.06 0.16
Wisconsin 5 1,703 251 499 0.17 0.16
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4.2 GNN models.
In our experiments, we study six GNN architectures that are widely used for semi-
supervised classification on graphs (a) Graph Convolutional Networks (GCN) [1],
(b) Graph Sample and Aggregate (SAGE) [3], (c) Graph Attention Networks
(GAT) [25], (d) Simple Graph Convolutions (SGC) [26], (e) Approximate Per-
sonalized Propagation of Neural Predictions (APPNP) [27], and (f) Cluster Graph
Neural Networks (CGCN) [28].
We additionally compare these approaches to a simple feature-only baseline, namely,

logistic regression, which ignores the graph structure and only uses the node features.
GNNs benefit of both the graph structure and node features, while the feature-only
baseline can only benefit of node features. For example, in datasets with a high
number of features (comparing to nodes), it is expected that the feature-only baseline
should have a high accuracy since it has access to a rich set of features. However,
GNNs also have access to graph structure in addition to that rich set of features.
Therefore, the comparison to this baseline can indicate whether a GNN model is
useful for the classification task on the respective datasets, that is, whether GNNs
can exploit the graph structure to increase the basleine perfromance. We show
hyperparameter settings in Appendix C.

4.3 Evaluation setup
While some original graphs in our dataset selection are directed, we treat all graphs
as undirected by ignoring the edge direction (which is in the line with previous
research [1, 3, 21]). All of these graphs are preprocessed similarly as Shchur et al. [21],
i.e., removing nodes with rare labels and selecting the largest weakly connected
component. Following the train/validation/test split strategy as in [21], each random
split consists of 50 labeled examples per class (20 for training and 30 for validation),
and the rest are considered test examples. This applies to all of our datasets except
Texas and Wisconsin, where we use 10 training examples and 15 validation examples
per class due to the fewer number of nodes. To evaluate the GNN models on the
original graphs, we follow the evaluation setup close to [21] by having 10 random
splits and randomly initializing model weights 10 times for each split. The same
process is carried out to evaluate the feature-only baseline (logistic regression) model.
The evaluation is slightly different for the manipulated graphs since they include

an additional level of randomization, and it goes as follows. For a manipulation type
on one dataset, we generate 10 manipulated graphs with different random seeds.
We evaluate each of these generated graphs through 5 different random splits and
5 times initializing model weights. As a result, the reported accuracy for a GNN
architecture on the original graph is presented after training the GNN 100 times.
Meanwhile, the reported accuracy of a GNN architecture on one of the manipulation
types is presented for training the GNN 250 times per dataset, i.e., 10 randomly
generated graphs × 5 random splits × 5 times of weight initialization.

5 Results
5.1 Manipulation impact on graphs.
We introduced intuitions about the datasets and their properties previously in
Section 4.1. Next, we show the measurements of the two contributing factors we
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Figure 1 Homophily and mixing measurements of the manipulated graphs. Here we show the
change in homophily and mixing of the manipulated graphs comparing to the original graphs of each
dataset. We can see that the intuitions we mention in our discussion in Section 4.1 are confirmed.

introduced in Section 3.1 on the original datasets, and on their manipulated versions.
We present these measurements in Figure 1. Comparing the original graphs to the
manipulated ones in this figure, we notice the following.
Hom+ increases homophily for all datasets (as expected). For most datasets, it does
not significantly change the mixing parameter. There are some cases where Hom+

decreases mixing, e.g., Actor.
Hom− decreases homophily for homophilic datasets to a relatively very low level.
However, these graphs increase the mixing of the datasets thereby effectively destroy-
ing community structure. The rewiring does not decrease homophily for datasets,
where the homophily is already low. This can be explained by some of these graphs
being heterophilic (or anti-homophilic). In this case, our manipulation decreases
heterophily, e.g., Texas and Wisconsin. Other graphs where homophily does not
change, that are Actor and Squirrel, can be neutral with respect to homophily. In
other words, they are neither homophilic nor heterophilic, and random rewiring just
results in a similar level of homophily.
Mix+ increases the mixing parameter, loosening the community structure and
potentially causing faster feature propagation. It also keeps a very close level of
homophily in general.
Mix− decreases the mixing parameter, tightening the community structure. It does
change the homophily but not as significantly as Hom+ or Hom−. Mix− decreases
the homophily for the first four homophilic datasets, and slightly increases it for the
other four non-homophilic datasets.
All in all, the manipulations generally achieve the changes which we intended for

each of them with few exceptions. Since the effects of our manipulations depends
on the nature of the original graphs, we will present the results of GNN accuracy
on the basis of homophily and mixing of the input graph in Section 5.3. Next, we
evaluate and compare different GNN models on original and manipulated graphs.
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Figure 2 GNN accuracy for homophilic datasets. This figure presents the accuracy of GNN models
on the homophilic datasets (original and manipulated). The red dashed line represents the median
accuracy of the feature-only baseline. The performance on the original graphs is consistently higher
than that of the baseline. Increasing homophily results in a higher accuracy for all datasets.
Decreasing community mixing causes a performance drop, which still outperforms the baseline in
most cases. Increasing mixing (by destroying sub-communities) while preserving homophily generally
causes an increase in performance. Destroying homophily and community structure (with Hom−)
causes a major performance drop.

5.2 GNN performance
We summarize the evaluation results of the GNN models with respect to accuracy
for the original graph and its corresponding manipulations of homophilic datasets in
Figure 2 and non-homophilic datasets in Figure 3.
Original graphs. We first compare the performance of GNNs on the original
graphs to the performance of the feature-only baseline. We easily notice that GNNs
outperform the feature-only baseline on all homophilic datasets in Figure 2, and do
not outperform the baseline on non-homophilic datasets in Figure 3. This makes the
impact of homophily very clear: the higher the homophily is the more likely GNNs
are to outperform feature-only baselines. For non-homophilic datasets, the graph
structure seems irrelevant to the learning process or is even hindering it.
Next we test the statistical significance for each approach on each dataset against

the corresponding baseline. We compute the non-parametric Mann-Whitney U
test for unpaired data with the significance level α = 0.01 (Bonferroni corrected).
We compare the performance of all GNN models on the original graphs to the
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Figure 3 GNN accuracy for non-homophilic datasets. This figure presents the accuracy of GNN
models on the non-homophilic datasets (original and manipulated). GNNs cannot outperform the
feature-only baseline on the original graphs, and achieve a similar accuracy to the Hom− graphs,
where the structure is destroyed. This suggests that the graph structure is irrelevant to GNN
accuracy. When we enforce homophily with Hom+ graphs, GNNs outperform the baseline on all
datasets. In other words, homophily makes the graph structure useful for classification with GNNs.
Destroying any aspect of the network does not improve the GNN performance over the baseline.
Comparing these results to those in Figure 2, we see that these aspects (degree distribution,
community structures and sub-communities within labels) do not concern GNNs when homophily
does not exist.

performance of the feature-only baseline. The significance test shows that the
performance of GNNs on the original homophilic graphs is significantly higher than
the performance of the feature-only baseline. For datasets with low homophily, the
baseline significantly outperforms GNN models on WebKB graphs (i.e., Texas and
Wisconsin). On the other hand, there is an overlap of the performance on Actor
and Squirrel datasets, where the homophily is not as low. The significance test on
these two datasets shows a non-significant difference for some GNN models (namely,
SAGE and GAT for Actor dataset, and GCN and SGC for Squirrel dataset).
Manipulated graphs. On all datasets, GNNs performance on Hom+ (both for
homophilic and non-homophilic data) outperforms their performance on the original
graphs and the performance of the feature-only baseline. By artificially adding high
homophily, GNNs improve their performance regardless of other aspects. Even
when the mixing decreases for CORA-Full, Actor and Texas (as pointed out in
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Section 5.1), the GNN still outperforms the baseline and the performance on the
original graphs. This indicates that the change of mixing does not affect the general
conclusion here, that is, higher homophily causes better GNN accuracy.
For Hom− graphs, the GNN performance is generally lower than the feature-only

baseline. These graphs cause a major drop in performance for homophilic data
compared to the original graphs. For non-homophilic data, the performance mainly
does not drop with Hom− graphs. These observations lead to the conclusion that low
homophily decreases the performance of GNNs. We should, however, bear in mind
that this manipulation also increases mixing significantly. We dedicate Section 5.3
to look at homophily and mixing separately to test against confounding factors.
Let’s look at Mix+ graphs now. We can see an increase of GNN accuracy on

all homophilic datasets. Mix+ graphs destroy the sub-community structure within
labels. One explanation for the increased accuracy is that the new structure causes
a faster feature propagation between nodes of the same label. This fast propagation
helps making the GNN vector representation of same-label nodes more similar than
it is in the original graphs. We further discuss this interpretation in Section 5.4.
With Mix− graphs for homophilic data, the GNNs show a drop in accuracy, but

they still outperform the feature-only baseline. This observation shows a noticeable
impact of communities on node classification in homophilic data sinceMix− rebuilds
the graph only based on community memberships, and still maintains a higher
performance than the baseline. On the contrary, for non-homophilic data, the
performance on Mix− graphs is not very different from destroying communities and
homophily with Hom−. In other words, community structure becomes irrelevant
when homophily is low. Since Mix− manipulation (as well as Hom− and Hom+)
has an effect on both homophily and mixing, we need to take a deeper look into the
results, which we address in Section 5.3.
GNN models comparison. Figures 2 and 3 show that GNN models generally
behave in a similar manner. Most models achieve a high performance when the
homophily is high and vice versa. We notice that CGCN does not perform as well
as the other GNN models when the homophily is high. CGCN outperforms other
GNN models when the homophily is low showing resilience to low homophily.

5.3 Impact of homophily and mixing on GNN performance
In this section, we report the accuracy of the GCN model[4] on original and

manipulated graphs. Figure 4 presents accuracy as a function of homophily and
mixing.
We notice that the main factor that affects the accuracy is the homophily of the

given graph, with higher homophily correlating with higher GCN accuracy in all
datasets. The changes in mixing do not show a strong impact on GCN accuracy.
However, we do notice a slight increase in accuracy when the mixing (slightly)
increases where the homophily is originally high (top row). We do not notice a
similar behaviour when increasing mixing, and the homophily is originally low
(bottom row) – observation discussed in Section 5.4. In fact, changing the mixing
when the homophily is low does not cause a noticeable change in GCN accuracy,
[4]We restrict the results in the main body of the paper to GCN and report the
results of the rest of the models in Appendix D
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Figure 4 Homophily and mixing impact on GCN accuracy. In this figure, we present the accuracy
gain of GCN over the feature-only baseline (with hue) as a function of mixing (x-axis) and
homophily (y-axis). The red dashed lines represent the mixing and the accuracy of the original
graph (the point at their intersection in each sub-figure is the original graph). We notice a change
in hue along the y-axis, and not the x-axis. This shows a strong impact of homophily on the
accuracy gain, while mixing does not have such a strong impact. Note, high mixing and high
homophily cannot be achieved with our manipulations at the same time, e.g., cases of pair-wise
homophilic relations without any community structure.

stressing the finding from Section 5.2 that community structure becomes irrelevant
when homophily is low.
The conclusion of this section is that regardless of the manipulation applied to the

graph, we find the homophily as the main contributor to the accuracy. We notice
that the role of communities is less trivial to interpret but is relevant only when the
homophily is high.

5.4 Destroying sub-community structure.
For Mix+ graphs, we rewire each subgraph of nodes with the same label. This
preserves the homophily level of the graph, but destroys the inner sub-community
structure for nodes of the same label. In Section 3.2 we hypothesized that this causes
faster propagation, and in Figure 2 we observed an increase of GNN performance
on these graphs. Now we intend to empirically show that the feature propagation
becomes faster.
We take a closer look into the feature propagation in Mix+ and original graphs

by extracting node representations in the first layer of a trained GCN model. The
representation in the first layer gives an intuition on how fast feature propagation
occurs.
As an example, we first visualize the vector representations of original and Mix+

for CORA-ML. We reduce the dimensionality of these vectors to two dimensions
using T-SNE, and plot the 2D points with their labels in Figure 5. The two plots of
original and Mix+ graphs show that nodes of the same label agglomerate already
in the first layer for Mix+ graph, while they still show more overlap for the original
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Original Mix+

Figure 5 Feature propagation in original and Mix+ graphs. We visualize the embeddings of nodes
in the first hidden layer of a trained GCN model for Cora-ML dataset projected to two dimensions
with T-SNE. The embeddings in the original graph (on the left) show an overlap of the areas of
different labels. The embeddings in the Mix+ graph (on the right) show less overlap and are more
linearly separable already in the first layer. As a result, we see an increase of the performance with
Mix+ networks.

graphs. This suggests the faster propagation among nodes of the same label for
Mix+ graphs in this example.
To study the overlap of nodes from different classes, we measure the average

silhouette coefficient for the representations of the original graphs and the Mix+

graphs (Table 3). We notice an increase of the average silhouette coefficient on the
Mix+ graphs especially for homophilic datasets, indicating the reduced overlap
between labels. This reduced overlap indicates a faster intra-label feature propagation
in Mix+ graphs compared to original graphs.

6 Community-label correlation
The results we obtained so far show deeper insights on the impact of homophily
and communities in node classification with GNNs. Based on these results, we
intend to devise a method that helps to determine whether to use a GNN model for
semi-supervised node classification on a given graph.
We start by looking at what homophily indicates. In Figure 1, we can see that

homophily estimates whether GNNs work on a given graph very well, i.e., homophily
is high when GNNs have high accuracy (in Figure 2) and vice versa (in Figure 3). In
other words, homophily correlates really well with GNN performance, and is a good
predictor of whether GNNs can be applied to a graph dataset for node classification.
So why not estimate homophily directly? Although homophily is a good
predictor, estimating homophily requires having enough adjacent labeled nodes. This

Table 3 Average silhouette coefficient for original and Mix+ graphs. After training a GCN model on
each graph (initializing the weights 10 times), we calculate the average silhouette coefficient of the
intermediate representation in the first GCN layer. We report the mean of these values over each
dataset, together with the difference.

CORA-ML CiteSeer PubMed CORA-Full Squirrel Actor Texas Wisconsin

Original 0.188 0.147 0.141 -0.048 -0.119 -0.039 0.102 -0.027
Mix+ 0.266 0.227 0.226 -0.014 -0.092 -0.037 0.102 -0.016

Silhouette ∆ 0.078 0.080 0.085 0.034 0.027 0.002 0 0.011
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Figure 6 Community-label correlation (ρ) on manipulated graphs. The bars represent the change in
this correlation measure. We see that the change in correlation is high for homophilic graphs and
low for non-homophilic graphs, following a pattern similar to homophily in Figure 1. This measure
was computed for the labeled nodes (train and validation sets) of each graph (original and
manipulated) with ten different random splits.

is not easily achievable in semi-supervised learning settings, where only very few
nodes are labeled. Therefore, we need an alternative measure that can function with
very few labeled nodes.
Intuitions from the results. The results in Figure 2 show that GNNs could still
outperform the baseline on Mix− graphs, where the graph structure is built merely
from community memberships. This observation highlights that communities encode
label information in homophilic graphs, i.e., where GNNs should work. In other
words, when the community membership correlates with node labels, GNNs can
outperform a feature-only baseline. Thus we can require to approximate homophily
not on pair-wise level, but on aggregated (or community) level. Next we describe a
measure for correlation between communities and labels to use as a predictor for
GNNs applicability.
Community-label correlation measure. To quantify the correlation between
communities and labels, we introduce a measure for community-label correlation.
This measure should quantify how much information a node’s community reveals
about its label. Let L be a random variable taking values in the set of labels L, i.e.,
L(u) is the label of node u ∈ V . Assuming the graph is partitioned into a set of
disjoint communities C, we define another random variable C taking values in C, i.e.,
C(u) is the community of node u ∈ V .
To measure how much the (fraction of) uncertainty about L is reduced knowing C,

we use the uncertainty coefficient [10] of L given C. This coefficient can be written
as

ρ = U(L|C) =
I(L;C)

H(L)
∈ [0, 1], (4)

where H(L) is the entropy of L, and I(L;C) is the mutual information between L
and C.
When ρ = 1, all nodes within each community share the same label, and thus

knowing the node’s community means also that we know the node’s label. On the
other hand, when ρ = 0, the label distribution is identical in all communities, so
knowing the community of a node does not contribute to knowing its label. In general,
the higher the eliminated uncertainty about the labels when knowing communities
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Figure 7 Community-label correlation with gradual community swapping. The figure shows the
calculated ρ for each dataset. The swap fraction represents the fraction of nodes which changed
their community. We see a decline in the coefficient with increasing swapping fraction for
homophilic datasets (top row). This line is already constant for non-homophilic datasets (bottom
row) as the measure is already low in the original graphs.

is (i.e., the closer ρ is to 1), the more likely it is that GNNs can exploit the graph
structure, and vice versa.
Unlike homophily, this correlation measure does not require adjacent labeled nodes.

This measure requires enough labeled nodes belonging to the same community,
which is easier to have in semi-supervised settings. To calculate ρ for a set of nodes,
the labels of these nodes must be available. Therefore, for each dataset in the next
experiments, we compute ρ using the labeled nodes from the training and validation
sets[5].
Can community-label correlation predict GNN applicability? Figure 6
shows the value of the community-label correlation ρ on the manipulated graphs. The
increase/decrease in the community-label correlation follows a similar pattern to the
increase/decrease of homophily value in Figure 1, such as, increased homophily with
Hom+ and decreased with Hom−. Since this measure helps to indicate homophily,
we expect that it can determine whether GNNs are suitable for classification on
a given graph dataset. In the following experiments, we empirically show viability
of this measure, and we use it to build a guideline that helps determining GNNs
applicability.
Community perturbations. To shed more light on the correlation between ρ and
the classification performance of GNNs, we now study the change of both GNN
accuracy and the measured community-label correlation ρ on the given datasets
after applying additional community perturbations. Particularly, we start with the
Mix− networks for each dataset and we perform the following perturbations. We
randomly select a fraction of nodes and assign them to different communities by
simply swapping the nodes position in the network. Then we gradually increase the
[5]We are aware that this correlation measure is just one choice of estimating
homophily. Therefore, we plan on doing a broader search for better metrics and
guidelines to estimate homophily, and assess whether GNNs are suitable for node
classification in semi-supervised settings.
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Figure 8 Community-label correlation impact on GCN accuracy. The figure shows GCN test
accuracy on all eight datasets with changing ρ. Each point represents a graph, where each graph is
a Mix− graph after applying swapping for a fraction of nodes with a certain random seed for
swapping. We see a positive correlation between ρ and the GNN accuracy for homophilic datasets
(top row), and no obvious correlation for non-homophilic datasets (bottom row).

fraction[6] of the selected nodes to obtain a spectrum of community-label correlation
ρ. Finally, we compute ρ and the accuracy of the GCN model[7] on each of the
obtained graphs. We show ρ as a function of the swapping fraction in Figure 7 and
visualize the correlation between ρ and the GCN accuracy in Figure 8. We choose
the Mix− networks for this experiment to guarantee that the node swapping only
changes nodes’ communities and not their importance (i.e., degree). We expect that
these perturbations gradually reduce ρ when the cluster assumption holds, i.e., for
homophilic datasets.
We show that ρ decreases and then converges for the homophilic datasets (Figure 7

- top), supporting that the community perturbations decrease the correlation between
communities and labels. In these cases, the GNN accuracy has a positive correlation
with ρ (Figure 8 - top). However, when community perturbations do not reduce
the correlation between communities and labels, ρ is already at a convergence level
(Figure 7 - bottom). For these datasets, there is no strong correlation between ρ
and the GNN accuracy (see Figure 8 - bottom). That is the case of non-homophilic
datasets where GNNs were not able to outperform the feature-only baseline. Our
measure shows to reflect the suitability of GNNs for different datasets.
Guideline for application of GNNs. To verify whether a GNN model is appli-
cable on a certain dataset, we suggest use the community-label correlation[8] based
on the previous observations. The first step is to perform community detection
[6]We iterate over fractions in steps of 0.1. For each fraction, we repeat the swapping
ten times for different random seeds.
[7]We train the GCN model five times on each obtained graph and report the mean
accuracy.
[8]Notice that this measure is only useful to estimate homophily when rare nodes are
labeled, e.g., in semi-supervised node classification. When a considerable amount of
nodes is labeled, e.g., 20% of nodes, then it is advised to use the homophily measure
as explained in Section 3.1
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on the dataset. Then we suggest to perform gradual community perturbations (as
explained above) and inspect the respective community-label correlation. If the value
of the coefficient decreases with more perturbations, this supports that the original
graph is homophilic, and GNNs are applicable. Otherwise, if it does not decrease,
the original graph is most likely non-homophilic in the first place, and feature-only
methods are more advisable than GNNs. Computing the correlation should not be
an expensive procedure in semi-supervised settings since only a small fraction of
nodes are labeled.

7 Conclusion
In this work, we analyzed the impact of community structures and homophily in
graphs on the performance of GNNs in semi-supervised node classification. Homophily
and community structure are significant factors that influence how graph data is
generated. By studying their impact on GNNs, we gain a deeper understanding
of the extents and limitations of state-of-the-art GNN models. By systematically
manipulating eight graph datasets, we showed that GNNs outperform a feature-only
baseline on this task in case the given graphs are homophilic. Otherwise, GNNs
cannot effectively exploit the graph structure for classification. Additionally, we show
an analysis on the relation between labels and graph communities. With our analysis,
we suggest that when community information does not contribute to classification, it
is not advisable to use GNNs for this task. In particular, we show that our measure
for the community-label correlation (computed through the uncertainty coefficient)
can indicate whether a dataset is homophilic. We further formalize a guideline to
select where to apply GNNs based on community-label correlation. Our work serves
as a contributing factor to intrinsic validation of the applicability of GNN models,
and gives insights on how plausible are current GNNs models. Future work can also
investigate how the generation of graphs (broader than homophily) influences GNN
performance, and how to build GNN architectures which are intrinsically adaptive
to different levels of homophily.
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Appendix A: Stochastic block matrix computation for Hom+

To create L-SBM graph graphs, we use a stochastic block model which is a generative
model that produces random graphs with communities identified by a stochastic block
matrix and with a Poisson degree distribution. To build the stochastic block matrix,
we first partition the nodes into disjoint sets based on their labels {V1, V2, ..., V|L|},
where L is the set of labels. We build a vector of block sizes reciprocals η =

[ 1
|V1| ,

1
|V2| , ...,

1
|V|L||

]T to use for normalization. We build the stochastic block matrix
M as follows

M :=
1

2
d̄indiag(η) +

1

n
η · ηT , (5)

where d̄in is the average node in-degree in the graph. We use M with the block sizes
to build a synthetic graph using the stochastic block model.

Appendix B: Stochastic block matrix computation for Mix−

The aim of this manipulation is to preserve community structure while eliminating
the degree distribution. To create these graphs, we use a stochastic block model
after performing community detection as follows.
Community detection. In order to achieve this, we first assigned a community id
to each node using the Louvain method for community detection. With the resulting
communities we were able to produce a stochastic matrix which served as an input
to the SBM.
Building the stochastic block matrix. We first calculate edge density within
each community and then between each pair of different communities. These edge
densities serve as edge probabilities between each pair of nodes in the resulting
stochastic matrix M . To increase the intra-community edge density, we multiply
each valueMi,i inM by 1.5 (clipped from the top so no value exceeds 1). To decrease
the inter-community edge density, we multiply each value Mi,j : i 6= j in M by 0.5.
We finally use matrix M for the stochastic block model, which results in a graph
with reduced community mixing.

Appendix C: Model settings
Common settings. For all the GNN architectures, we use a model of two hidden
layer, with the second layer as the output layer. The first hidden layer for each
GNN architecture uses the activation that was used in the corresponding paper. The
second hidden layer has the size of the number of labels in the respective dataset,
and uses softmax as an activation function. For the training process, we use the
negative log likelihood as our loss function. We use Adam optimizer for 200 epochs,
with early stopping after the validation accuracy has not improved for 10 consecutive
epochs[9]. Then we select the state of the model at the epoch where the highest
validation accuracy was achieved[10].
Hyperparameter search. We perform the following grid search to find the hyper-
parameter setting which maximizes the mean validation accuracy over 10 random
splits with 10 random model initialization.
[9]The training typically stops before the 50-th epoch.
[10]We implement our models and evaluations using PyTorch Geometric https://

pytorch-geometric.readthedocs.io/.

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
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Figure 9 Homophily and mixing impact on SAGE accuracy.

• First hidden layer size: [12, 24, 48, 96]

• Learning rate: [0.001, 0.005, 0.01]

• Dropout probability: [0.2, 0.4, 0.6, 0.8]

• Regularization weight: [0.0001, 0.001, 0.01, 0.1]

• Attention dropout probability for GAT: [0.2, 0.3, 0.4, 0.6, 0.8]

• Attention heads for GAT’s first hidden layer: [2, 4, 8]

After grid search, the chosen hidden layer size for all models turned out to be 96.
Table 5 shows the hyperparameters used after grid search except for GAT which is
shown in Table 4.

Appendix D: Homophily and mixing impact on GNN accuracy
We visualize the accuracy of different GNN models as a function of homophily and
mixing in Figures 9, 10, 11, 12, and 13 in the same manner done for GCN in Figure 4.

Table 4 Chosen hyperparameters for GAT model.

Dropout Learning rate Regularization weight Heads Attention dropout
Dataset

CORA-ML 0.4 0.01 0.0100 4 0.2
Citeseer 0.4 0.01 0.0100 4 0.2
Pubmed 0.2 0.01 0.0001 8 0.3
CORA-Full 0.2 0.01 0.0001 8 0.3
Actor 0.4 0.01 0.0100 4 0.3
Squirrel 0.4 0.01 0.0001 2 0.2
Texas 0.4 0.01 0.0100 4 0.3
Wisconsin 0.4 0.01 0.0100 4 0.3
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Figure 10 Homophily and mixing impact on GAT accuracy.
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Figure 11 Homophily and mixing impact on SGC accuracy.
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Figure 12 Homophily and mixing impact on APPNP accuracy.
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Table 5 Chosen hyperparameters for all GNN models except GAT.

Dropout Learning rate Regularization weight
Dataset

GCN

CORA-ML 0.8 0.010 0.0100
Citeseer 0.8 0.010 0.0100
Pubmed 0.8 0.010 0.0100
CORA-Full 0.2 0.005 0.0010
Actor 0.8 0.010 0.0100
Squirrel 0.4 0.010 0.0100
Texas 0.8 0.010 0.0100
Wisconsin 0.8 0.010 0.0100

SAGE

CORA-ML 0.8 0.010 0.0100
Citeseer 0.8 0.010 0.0100
Pubmed 0.8 0.010 0.0100
CORA-Full 0.8 0.005 0.0010
Actor 0.8 0.010 0.0100
Squirrel 0.4 0.005 0.1000
Texas 0.8 0.010 0.0100
Wisconsin 0.8 0.010 0.0100

APPNP

CORA-ML 0.8 0.010 0.0100
Citeseer 0.8 0.010 0.0100
Pubmed 0.8 0.010 0.0100
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Figure 13 Homophily and mixing impact on CGCN accuracy.
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